From the Lie Operad to the Grothendieck–Teichmüller Group

Author:

Wolff Vincent1

Affiliation:

1. Mathematics Research Unit , University of Luxembourg, Maison du Nombre, 6 Avenue de la Fonte, L-4364 Esch-sur-Alzette, Grand Duchy of Luxembourg

Abstract

Abstract We study the deformation complex of the natural morphism from the degree $d$ shifted Lie operad to its polydifferential version, and prove that it is quasi-isomorphic to the Kontsevich graph complex $\textbf {GC}_{d}$. In particular, we show that in the case $d=2$ the Grothendieck–Teichmüller group $\textbf {GRT}_{1}$ is a symmetry group (up to homotopy) of the aforementioned morphism. We also prove that in the case $d=1$, corresponding to the usual Lie algebras, the natural morphism admits a unique homotopy non-trivial deformation, which is described explicitly with the help of the universal enveloping construction. Finally, we prove the rigidity of the strongly homotopy version of the universal enveloping functor in the Lie theory.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference23 articles.

1. From deformation theory of wheeled props to classification of Kontsevich formality maps;Andersson;Int. Math. Res. Not. IMRN,2022

2. A universal enveloping for ${L}\_{\infty } $-algebras;Baranovsky;Math. Res. Lett.,2008

3. Universal enveloping algebras and some applications in physics;Bekaert,2005

4. Stable formality quasi-isomorphisms for Hochschild cochains;Dolgushev;Mém. Soc. Math. Fr. (N.S.),2021

5. Quantization of lie bialgebras. I;Etingof;Selecta Math. (N.S.),1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3