Constraining Images of Quadratic Arboreal Representations

Author:

Ferraguti Andrea1,Pagano Carlo2

Affiliation:

1. Instituto de Ciencias Matemáticas, Campus de Cantoblanco, 13–15 Calle de Nicolás Cabrera, 28049 Madrid, Spain

2. Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

Abstract

Abstract In this paper, we prove several results on finitely generated dynamical Galois groups attached to quadratic polynomials. First, we show that, over global fields, quadratic post-critically finite (PCF) polynomials are precisely those having an arboreal representation whose image is topologically finitely generated. To obtain this result, we also prove the quadratic case of Hindes’ conjecture on dynamical non-isotriviality. Next, we give two applications of this result. On the one hand, we prove that quadratic polynomials over global fields with abelian dynamical Galois group are necessarily PCF, and we combine our results with local class field theory to classify quadratic pairs over ${ {\mathbb{Q}}}$ with abelian dynamical Galois group, improving on recent results of Andrews and Petsche. On the other hand, we show that several infinite families of subgroups of the automorphism group of the infinite binary tree cannot appear as images of arboreal representations of quadratic polynomials over number fields, yielding unconditional evidence toward Jones’ finite index conjecture.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference27 articles.

1. The arithmetic basilica: a quadratic PCF arboreal Galois group;Ahmad,2019

2. A relative Dobrowolski lower bound over abelian extensions;Amoroso;Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),2000

3. Local arboreal representations;Anderson;Int. Math. Res. Not. IMRN,2018

4. Abelian extensions in dynamical Galois theory;Andrews;Algebra Number Theory,2020

5. Attracting cycles in $\mathrm{p}$-adic dynamics and height bounds for postcritically finite maps;Benedetto;Duke Math. J.,2014

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Iterated monodromy group of a PCF quadratic non-polynomial map;manuscripta mathematica;2024-04-02

2. Cyclotomic and abelian points in backward orbits of rational functions;Advances in Mathematics;2024-02

3. Isotriviality, integral points, and primitive primes in orbits in characteristic p;Algebra & Number Theory;2023-09-09

4. Galois groups and prime divisors in random quadratic sequences;Mathematical Proceedings of the Cambridge Philosophical Society;2023-09-07

5. Irreducible polynomials in quadratic semigroups;Journal of Number Theory;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3