Precision measurement and frequency metrology with ultracold atoms

Author:

Zhang Xibo1,Ye Jun1

Affiliation:

1. JILA, NIST and University of Colorado, 440 UCB, Boulder, CO 80309, USA

Abstract

Abstract Precision measurement and frequency metrology have pushed many scientific and technological frontiers in the field of atomic, molecular and optical physics. In this article, we provide a brief review on the recent development of optical atomic clocks, with an emphasis placed on the important inter-dependence between measurement precision and systematic effects. After presenting a general discussion on the motivation and techniques behind the development of optical lattice clocks, where the use of many atoms greatly enhances the measurement precision, we present the JILA strontium optical lattice clock as the leading system of frequency metrology with the lowest total uncertainty, and we describe other related research activities. We discuss key ingredients that have enabled the optical lattice clocks with ultracold atoms to reach the 18th digit in both precision and accuracy. Furthermore, we discuss extending the power of precision clock spectroscopy to study quantum many-body physics and to provide control for atomic quantum materials. In addition, we explore future research directions that have the potential to achieve even greater precision.

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3