Multicellular “hotspots” harbor high-grade potential in lower-grade gliomas

Author:

Kirby Alastair J1ORCID,Lavrador José P2,Bodi Istvan13,Vergani Francesco2,Bhangoo Ranjeev2,Ashkan Keyoumars12,Finnerty Gerald T14ORCID

Affiliation:

1. Department of Basic and Clinical Neuroscience, King’s College London, London, UK

2. Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK

3. Department of Clinical Neuropathology, King’s College Hospital NHS Foundation Trust, London, UK

4. Department of Neurology, King’s College Hospital NHS Foundation Trust, London, UK

Abstract

Abstract Background Lower-grade gliomas may be indolent for many years before developing malignant behavior. The mechanisms underlying malignant progression remain unclear. Methods We collected blocks of live human brain tissue donated by people undergoing glioma resection. The tissue blocks extended through the peritumoral cortex and into the glioma. The living human brain tissue was cut into ex vivo brain slices and bathed in 5-aminolevulinic acid (5-ALA). High-grade glioma cells avidly take up 5-ALA and accumulate high levels of the fluorescent metabolite, Protoporphyrin IX (PpIX). We exploited the PpIX fluorescence emitted by higher-grade glioma cells to investigate the earliest stages of malignant progression in lower-grade gliomas. Results We found sparsely distributed “hot-spots” of PpIX-positive cells in living lower-grade glioma tissue. Glioma cells and endothelial cells formed part of the PpIX hotspots. Glioma cells in PpIX hotspots were IDH1 mutant and expressed nestin suggesting they had acquired stem-like properties. Spatial analysis with 5-ALA-conjugated quantum dots indicated that these glioma cells replicated adjacent to blood vessels. PpIX hotspots were formed in the absence of angiogenesis. Conclusion Our data show that PpIX hotspots represent microdomains of cells with high-grade potential within lower-grade gliomas and identify locations where malignant progression could start.

Funder

Medical Research Council

Psychiatry Research Trust

Publisher

Oxford University Press (OUP)

Subject

Electrical and Electronic Engineering,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3