Mitochondrial 1555 G>A variant as a potential risk factor for childhood glioblastoma

Author:

Li Shaobo1ORCID,Gai Xiaowu2,Myint Swe Swe1,Arroyo Katti1,Morimoto Libby3ORCID,Metayer Catherine3,de Smith Adam J1,Walsh Kyle M4,Wiemels Joseph L1

Affiliation:

1. Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA

2. Center for Personalized Medicine, Children’s Hospital of Los Angeles, Los Angeles, California, USA

3. School of Public Health, University of California Berkeley, Berkeley, California, USA

4. Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, North Carolina, USA

Abstract

Abstract Background Childhood glioblastoma multiforme (GBM) is a highly aggressive disease with low survival, and its etiology, especially concerning germline genetic risk, is poorly understood. Mitochondria play a key role in putative tumorigenic processes relating to cellular oxidative metabolism, and mitochondrial DNA variants were not previously assessed for association with pediatric brain tumor risk. Methods We conducted an analysis of 675 mitochondrial DNA variants in 90 childhood GBM cases and 2789 controls to identify enrichment of mitochondrial variant associated with GBM risk. We also performed this analysis for other glioma subtypes including pilocytic astrocytoma. Nuclear-encoded mitochondrial gene variants were also analyzed. Results We identified m1555 A>G was significantly associated with GBM risk (adjusted OR 29.30, 95% CI 5.25–163.4, P-value 9.5 X 10–4). No association was detected for other subtypes. Haplotype analysis further supported the independent risk contributed by m1555 G>A, instead of a haplogroup joint effect. Nuclear-encoded mitochondrial gene variants identified significant associations in European (rs62036057 in WWOX, adjusted OR = 2.99, 95% CI 1.88–4.75, P-value = 3.42 X 10–6) and Hispanic (rs111709726 in EFHD1, adjusted OR = 3.57, 95% CI 1.99–6.40, P-value = 1.41 X 10–6) populations in ethnicity-stratified analyses. Conclusion We report for the first time a potential role played by a functional mitochondrial ribosomal RNA variant in childhood GBM risk, and a potential role for both mitochondrial and nuclear-mitochondrial DNA polymorphisms in GBM tumorigenesis. These data implicate cellular oxidative metabolic capacity as a contributor to the etiology of pediatric glioblastoma.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Electrical and Electronic Engineering,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3