Are the FAIR Data Principles fair?

Author:

Dunning AlastairORCID,De Smaele MadeleineORCID,Böhmer JasminORCID

Abstract

This practice paper describes an ongoing research project to test the effectiveness and relevance of the FAIR Data Principles. Simultaneously, it will analyse how easy it is for data archives to adhere to the principles. The research took place from November 2016 to January 2017, and will be underpinned with feedback from the repositories. The FAIR Data Principles feature 15 facets corresponding to the four letters of FAIR - Findable, Accessible, Interoperable, Reusable. These principles have already gained traction within the research world. The European Commission has recently expanded its demand for research to produce open data. The relevant guidelines1are explicitly written in the context of the FAIR Data Principles. Given an increasing number of researchers will have exposure to the guidelines, understanding their viability and suggesting where there may be room for modification and adjustment is of vital importance. This practice paper is connected to a dataset(Dunning et al.,2017) containing the original overview of the sample group statistics and graphs, in an Excel spreadsheet. Over the course of two months, the web-interfaces, help-pages and metadata-records of over 40 data repositories have been examined, to score the individual data repository against the FAIR principles and facets. The traffic-light rating system enables colour-coding according to compliance and vagueness. The statistical analysis provides overall, categorised, on the principles focussing, and on the facet focussing results. The analysis includes the statistical and descriptive evaluation, followed by elaborations on Elements of the FAIR Data Principles, the subject specific or repository specific differences, and subsequently what repositories can do to improve their information architecture. (1) H2020 Guidelines on FAIR Data Management:http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf

Publisher

Edinburgh University Library

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3