In-stream <i>Escherichia coli</i> modeling using high-temporal-resolution data with deep learning and process-based models

Author:

Abbas Ather,Baek Sangsoo,Silvera Norbert,Soulileuth Bounsamay,Pachepsky YakovORCID,Ribolzi Olivier,Boithias LaurieORCID,Cho Kyung Hwa

Abstract

Abstract. Contamination of surface waters with microbiological pollutants is a major concern to public health. Although long-term and high-frequency Escherichia coli (E. coli) monitoring can help prevent diseases from fecal pathogenic microorganisms, such monitoring is time-consuming and expensive. Process-driven models are an alternative means for estimating concentrations of fecal pathogens. However, process-based modeling still has limitations in improving the model accuracy because of the complexity of relationships among hydrological and environmental variables. With the rise of data availability and computation power, the use of data-driven models is increasing. In this study, we simulated fate and transport of E. coli in a 0.6 km2 tropical headwater catchment located in the Lao People's Democratic Republic (Lao PDR) using a deep-learning model and a process-based model. The deep learning model was built using the long short-term memory (LSTM) methodology, whereas the process-based model was constructed using the Hydrological Simulation Program–FORTRAN (HSPF). First, we calibrated both models for surface as well as for subsurface flow. Then, we simulated the E. coli transport with 6 min time steps with both the HSPF and LSTM models. The LSTM provided accurate results for surface and subsurface flow with 0.51 and 0.64 of the Nash–Sutcliffe efficiency (NSE) values, respectively. In contrast, the NSE values yielded by the HSPF were −0.7 and 0.59 for surface and subsurface flow. The simulated E. coli concentrations from LSTM provided the NSE of 0.35, whereas the HSPF gave an unacceptable performance with an NSE value of −3.01 due to the limitations of HSPF in capturing the dynamics of E. coli with land-use change. The simulated E. coli concentration showed the rise and drop patterns corresponding to annual changes in land use. This study showcases the application of deep-learning-based models as an efficient alternative to process-based models for E. coli fate and transport simulation at the catchment scale.

Funder

Korea Environmental Industry and Technology Institute

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference108 articles.

1. Abbasa, A., Baek, S., Kim M., Ligaray, M., Ribolzi, O., Silvera, N., Min, J.-H., Boithias, L., and Kyung, H. C.: Surface and sub-surface flow estimation at high temporal resolution using deep neural networks, J. Hydrol., 590, 125370, https://doi.org/10.1016/j.jhydrol.2020.125370, 2020.

2. Abimbola, O. P., Mittelstet, A. R., Messer, T. L., Berry, E. D., Bartelt-Hunt, S. L., and Hansen, S. P.: Predicting Escherichia coli loads in cascading dams with machine learning: An integration of hydrometeorology, animal density and grazing pattern, Sci. Total Environ., 722, 137894, https://doi.org/10.1016/j.scitotenv.2020.137894, 2020.

3. Abimbola, O., Mittelstet, A., Messer, T., Berry, E., and van Griensven, A.: Modeling and Prioritizing Interventions Using Pollution Hotspots for Reducing Nutrients, Atrazine and E. coli Concentrations in a Watershed, Sustainability, 13, 103, https://doi.org/10.3390/su13010103, 2021.

4. Abadi, M., Barham, P., Chen, J., et al.: Kudlur, M.: Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16), 265–283, Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, usenix The advanced computing systems association, Berkeley, California, United States, 2016.

5. Ackerman, D. and Weisberg, S. B.: Evaluating HSPF runoff and water quality predictions at multiple time and spatial scales, edited by: SBW a. K. Miller, Southern California coastal water research project biennial report, 2006, 3535 Harbor Blvd., Suite 110 Costa Mesa, CA 92626, USA, 293–303, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3