User-oriented hydrological indices for early warning systems with validation using post-event surveys: flood case studies in the Central Apennine District

Author:

Lombardi Annalina,Colaiuda ValentinaORCID,Verdecchia Marco,Tomassetti Barbara

Abstract

Abstract. Floods and flash floods are complex events, depending on weather dynamics, basin physiographical characteristics, land use cover and water management. For this reason, the prediction of such events usually deals with very accurate model tuning and validation, which is usually site-specific and based on climatological data, such as discharge time series or flood databases. In this work, we developed and tested two hydrological-stress indices for flood detection in the Italian Central Apennine District: a heterogeneous geographical area, characterized by complex topography and medium-to-small catchment extension. The proposed indices are threshold-based and developed considering operational requirements of National Civil Protection Department end-users. They are calibrated and tested through the application of signal theory, in order to overcome data scarcity over ungauged areas, as well as incomplete discharge time series. The validation has been carried out on a case study basis, using flood reports from various sources of information, as well as hydrometric-level time series, which represent the actual hydrological quantity monitored by Civil Protection operators. Obtained results show that the overall accuracy of flood prediction is greater than 0.8, with false alarm rates below 0.5 and the probability of detection ranging from 0.51 to 0.80. Moreover, the different nature of the proposed indices suggests their application in a complementary way, as the index based on drained precipitation appears to be more sensitive to rapid flood propagation in small tributaries, while the discharge-based index is particularly responsive to main-channel dynamics.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3