Numerical daemons of hydrological models are summoned by extreme precipitation

Author:

La Follette Peter T.,Teuling Adriaan J.ORCID,Addor NansORCID,Clark Martyn,Jansen KoenORCID,Melsen Lieke A.ORCID

Abstract

Abstract. Hydrological models are usually systems of nonlinear differential equations for which no analytical solutions exist and thus rely on numerical solutions. While some studies have investigated the relationship between numerical method choice and model error, the extent to which extreme precipitation such as that observed during hurricanes Harvey and Katrina impacts numerical error of hydrological models is still unknown. This knowledge is relevant in light of climate change, where many regions will likely experience more intense precipitation. In this experiment, a large number of hydrographs are generated with the modular modeling framework FUSE (Framework for Understanding Structural Errors), using eight numerical techniques across a variety of forcing data sets. All constructed models are conceptual and lumped. Multiple model structures, parameter sets, and initial conditions are incorporated for generality. The computational cost and numerical error associated with each hydrograph were recorded. Numerical error is assessed via root mean square error and normalized root mean square error. It was found that the root mean square error usually increases with precipitation intensity and decreases with event duration. Some numerical methods constrain errors much more effectively than others, sometimes by many orders of magnitude. Of the tested numerical methods, a second-order adaptive explicit method is found to be the most efficient because it has both a small numerical error and a low computational cost. A small literature review indicates that many popular modeling codes use numerical techniques that were suggested by this experiment to be suboptimal. We conclude that relatively large numerical errors may be common in current models, highlighting the need for robust numerical techniques, in particular in the face of increasing precipitation extremes.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3