Spatially resolved infrared radiofluorescence: single-grain K-feldspar dating using CCD imaging
-
Published:2021-05-21
Issue:1
Volume:3
Page:299-319
-
ISSN:2628-3719
-
Container-title:Geochronology
-
language:en
-
Short-container-title:Geochronology
Author:
Mittelstraß DirkORCID, Kreutzer SebastianORCID
Abstract
Abstract. The success of luminescence dating as a chronological tool in Quaternary
science builds upon innovative methodological approaches, providing new
insights into past landscapes. Infrared radiofluorescence (IR-RF) on
K-feldspar is such an innovative method that was already introduced two decades
ago. IR-RF promises considerable extended temporal range and a simple
measurement protocol, with more dating applications being published recently.
To date, all applications have used multi-grain measurements. Herein, we take
the next step by enabling IR-RF measurements on a single grain level.
Our contribution introduces spatially resolved infrared
radiofluorescence (SR IR-RF) on K-feldspars and intends to make SR IR-RF
broadly accessible as a geochronological tool. In the first part of the
article, we detail equipment, CCD camera settings and software needed
to perform and analyse SR IR-RF measurements. We use a newly developed
ImageJ macro to process the image data, identify IR-RF emitting
grains and obtain single-grain IR-RF signal curves. For subsequent
analysis, we apply the statistical programming environment R and
the package Luminescence. In the second part of the article, we
test SR IR-RF on two K-feldspar samples. One sample was irradiated
artificially; the other sample received a natural dose. The artificially
irradiated sample renders results indistinguishable from conventional
IR-RF measurements with the photomultiplier tube. The natural sample
seems to overestimate the expected dose by ca. 50 % on average. However,
it also shows a lower dose component, resulting in ages consistent with
the same sample's quartz fraction. Our experiments also revealed an
unstable signal background due to our cameras' degenerated cooling
system. Besides this technical issue specific to the system we used, SR
IR-RF is ready for application. Our contribution provides guidance and
software tools for methodological and applied luminescence (dating)
studies on single-grain feldspars using radiofluorescence.
Funder
Agence Nationale de la Recherche H2020 Marie Skłodowska-Curie Actions
Publisher
Copernicus GmbH
Reference63 articles.
1. Allaire, J. J., Xie, Y., R Foundation, Wickham, H., Journal of Statistical Software,
Vaidyanathan, R., Association for Computing Machinery, Boettiger, C., Elsevier, Broman, K., Mueller, K.,
Quast, B., Pruim, R., Marwick, B., Wickham, C., Keyes, O., Yu, M., Emaasit, D., Onkelinx, T., Gasparini, A., Desautels, M.-A., Leutnant, D., MDPI, Taylor and
Francis, Öğreden, O., Hance, D., Nüst, D., Uvesten, P., Campitelli, E., Muschelli, J.,
Hayes, A., Kamvar, Z. N., Ross, N., Cannoodt, R., Luguern, D., Kaplan, D. M.,
Kreutzer, S., Wang, S., Hesselberth, J., and Dervieux, C.: rticles:
Article Formats for R Markdown,
R package version 0.18.3, available at: https://CRAN.R-project.org/package=rticles (last access: 28 March 2021), GitHub,
2021. a 2. Baril, M. R.: CCD imaging of the infra-red stimulated luminescence of
feldspars, Radiat. Meas., 38, 81–86,
https://doi.org/10.1016/j.radmeas.2003.08.005, 2004. a 3. Bortolot, V. J.: A new modular high capacity OSL reader system, Radiat.
Meas., 32, 751–757, https://doi.org/10.1016/S1350-4487(00)00038-X, 2000. a 4. Bøtter-Jensen, L., Bulur, E., Duller, G. A. T., and Murray, A. S.: Advances in
luminescence instrument systems, Radiat. Meas., 32, 523–528,
https://doi.org/10.1016/S1350-4487(00)00039-1, 2000. a 5. Bøtter-Jensen, L., Andersen, C. E., Duller, G. A. T., and Murray, A. S.:
Developments in radiation, stimulation and oberservation facilities in
luminescence measurements, Radiat. Meas., 37, 535–541,
https://doi.org/10.1016/S1350-4487(03)00020-9, 2003. a
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|