Decoupling of urban CO<sub>2</sub> and air pollutant emission reductions during the European SARS-CoV-2 lockdown

Author:

Lamprecht ChristianORCID,Graus Martin,Striednig Marcus,Stichaner Michael,Karl ThomasORCID

Abstract

Abstract. Lockdown and the associated massive reduction in people's mobility imposed by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) mitigation measures across the globe provide a unique sensitivity experiment to investigate impacts on carbon and air pollution emissions. We present an integrated observational analysis based on long-term in situ multispecies eddy flux measurements, allowing for quantifying near-real-time changes of urban surface emissions for key air quality and climate tracers. During the first European SARS-CoV-2 wave we find that the emission reduction of classic air pollutants decoupled from CO2 and was significantly larger. These differences can only be rationalized by the different nature of urban combustion sources and point towards a systematic bias of extrapolated urban NOx emissions in state-of-the-art emission models. The analysis suggests that European policies, shifting residential, public, and commercial energy demand towards cleaner combustion, have helped to improve air quality more than expected and that the urban NOx flux remains to be dominated (e.g., >90 %) by traffic.

Funder

Austrian Science Fund

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3