The arctic seasonal cycle of total column CO<sub>2</sub> and CH<sub>4</sub> from ground-based solar and lunar FTIR absorption spectrometry

Author:

Buschmann MatthiasORCID,Deutscher Nicholas M.ORCID,Palm MathiasORCID,Warneke Thorsten,Weinzierl Christine,Notholt Justus

Abstract

Abstract. Solar absorption spectroscopy in the near infrared has been performed in Ny-Ålesund (78.9° N, 11.9° E) since 2002; however, due to the high latitude of the site, the sun is below the horizon from October to March (polar night) and no solar absorption measurements are possible. Here we present a novel method of retrieving the total column dry-air mole fractions (DMFs) of CO2 and CH4 using moonlight in winter. Measurements have been taken during the polar nights from 2012 to 2016 and are validated with TCCON (Total Carbon Column Observing Network) measurements by solar and lunar absorption measurements on consecutive days and nights during spring and autumn. The complete seasonal cycle of the DMFs of CO2 and CH4 is presented and a precision of up to 0.5 % is achieved. A comparison of solar and lunar measurements on consecutive days during day and night in March 2013 yields non-significant biases of 0. 66 ± 4. 56 ppm for xCO2 and −1. 94 ± 20. 63 ppb for xCH4. Additionally a model comparison has been performed with data from various reanalysis models.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3