An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO<sub>2</sub> or accumulation-mode sulfuric acid aerosols

Author:

Weisenstein Debra K.ORCID,Visioni DanieleORCID,Franke HenningORCID,Niemeier UlrikeORCID,Vattioni Sandro,Chiodo GabrielORCID,Peter Thomas,Keith David W.

Abstract

Abstract. Studies of stratospheric solar geoengineering have tended to focus on modification of the sulfuric acid aerosol layer, and almost all climate model experiments that mechanistically increase the sulfuric acid aerosol burden assume injection of SO2. A key finding from these model studies is that the radiative forcing would increase sublinearly with increasing SO2 injection because most of the added sulfur increases the mass of existing particles, resulting in shorter aerosol residence times and aerosols that are above the optimal size for scattering. Injection of SO3 or H2SO4 from an aircraft in stratospheric flight is expected to produce particles predominantly in the accumulation-mode size range following microphysical processing within an expanding plume, and such injection may result in a smaller average stratospheric particle size, allowing a given injection of sulfur to produce more radiative forcing. We report the first multi-model intercomparison to evaluate this approach, which we label AM-H2SO4 injection. A coordinated multi-model experiment designed to represent this SO3- or H2SO4-driven geoengineering scenario was carried out with three interactive stratospheric aerosol microphysics models: the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM2) with the Whole Atmosphere Community Climate Model (WACCM) atmospheric configuration, the Max-Planck Institute's middle atmosphere version of ECHAM5 with the HAM microphysical module (MAECHAM5-HAM) and ETH's SOlar Climate Ozone Links with AER microphysics (SOCOL-AER) coordinated as a test-bed experiment within the Geoengineering Model Intercomparison Project (GeoMIP). The intercomparison explores how the injection of new accumulation-mode particles changes the large-scale particle size distribution and thus the overall radiative and dynamical response to stratospheric sulfur injection. Each model used the same injection scenarios testing AM-H2SO4 and SO2 injections at 5 and 25 Tg(S) yr−1 to test linearity and climate response sensitivity. All three models find that AM-H2SO4 injection increases the radiative efficacy, defined as the radiative forcing per unit of sulfur injected, relative to SO2 injection. Increased radiative efficacy means that when compared to the use of SO2 to produce the same radiative forcing, AM-H2SO4 emissions would reduce side effects of sulfuric acid aerosol geoengineering that are proportional to mass burden. The model studies were carried out with two different idealized geographical distributions of injection mass representing deployment scenarios with different objectives, one designed to force mainly the midlatitudes by injecting into two grid points at 30∘ N and 30∘ S, and the other designed to maximize aerosol residence time by injecting uniformly in the region between 30∘ S and 30∘ N. Analysis of aerosol size distributions in the perturbed stratosphere of the models shows that particle sizes evolve differently in response to concentrated versus dispersed injections depending on the form of the injected sulfur (SO2 gas or AM-H2SO4 particulate) and suggests that prior model results for concentrated injection of SO2 may be strongly dependent on model resolution. Differences among models arise from differences in aerosol formulation and differences in model dynamics, factors whose interplay cannot be easily untangled by this intercomparison.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Deutsches Klimarechenzentrum

Deutsche Forschungsgemeinschaft

ETH Zürich Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3