Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species
-
Published:2017-06-13
Issue:11
Volume:17
Page:6925-6955
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Bieser JohannesORCID, Slemr Franz, Ambrose Jesse, Brenninkmeijer Carl, Brooks Steve, Dastoor Ashu, DeSimone Francesco, Ebinghaus Ralf, Gencarelli Christian N.ORCID, Geyer BeateORCID, Gratz Lynne E., Hedgecock Ian M.ORCID, Jaffe Daniel, Kelley Paul, Lin Che-Jen, Jaegle Lyatt, Matthias VolkerORCID, Ryjkov Andrei, Selin Noelle E.ORCID, Song ShaojieORCID, Travnikov Oleg, Weigelt Andreas, Luke Winston, Ren XinrongORCID, Zahn Andreas, Yang Xin, Zhu Yun, Pirrone Nicola
Abstract
Abstract. Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results.
Funder
Seventh Framework Programme
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference158 articles.
1. Allen, D. J., Dibb, J. E., Ridley, B., Pickering, K. E., and Talbot, R. W.: An estimate of the stratospheric contribution to springtime tropospheric ozone maxima using TOPSE measurements and beryllium-7 simulations, J. Geophys. Res., 108, 8355, https://doi.org/10.1029/2001JD001428, 2003. 2. AMAP/UNEP: Technical Background Report for the Global Mercury Assessment, Arctic Monitoring and Assessment Programme, Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland, vi, 263 pp., available at: https://www.amap.no/documents/doc/ (last access: 1 November 2016), 2013a. 3. AMAP/UNEP: Geospatially distributed mercury emissions dataset 2010v1, available at: http://www.amap.no/mercury-emissions (last access: 1 November 2016), 2013b. 4. Ambrose, J. L., Lyman, S. N., Huang, J., Gustin, M. S., and Jaffe, D. A.: Fast time resolution oxidized mercury measurements during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX), Environ. Sci. Technol., 47, 7285–7294, https://doi.org/10.1021/es303916v, 2013. 5. Ambrose, J. L., Gratz, L. E., Jaffe, D. A., Campos, T., Flocke, F. M., Knapp, D. J., Stechman, D. M., Stell, M., Weinheimer, A., Cantrell, C., and Mauldin, R. L.: Mercury emission ratios from coal-fired power plants in the Southeastern United States during NOMADSS, Environ. Sci. Technol., 49, 10389–10387, https://doi.org/10.1021/acs.est.5b01755, 2015.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|