Abstract
Abstract. The new spectrometer of the Munich Aerosol Cloud Scanner (specMACS) is a multipurpose hyperspectral cloud and sky imager designated, but is not limited to investigations of cloud–aerosol interactions in Earth's atmosphere. With its high spectral and spatial resolution, the instrument is designed to measure solar radiation in the visible and shortwave infrared region that is reflected from, or transmitted through clouds and aerosol layers. It is based on two hyperspectral cameras that measure in the solar spectral range between 400 and 2500 nm with a spectral bandwidth between 2.5 and 12.0 nm. The instrument was operated in ground-based campaigns as well as aboard the German High Altitude LOng Range (HALO) research aircraft, e.g., during the ACRIDICON-CHUVA campaign in Brazil during summer 2014. This paper describes the specMACS instrument hardware and software design and characterizes the instrument performance. During the laboratory characterization of the instrument, the radiometric response as well as the spatial and spectral resolution was assessed. Since the instrument is primarily intended for retrievals of atmospheric quantities by inversion of radiative models using measured radiances, a focus is placed on the determination of its radiometric response. Radiometric characterization was possible for both spectrometers, with an absolute accuracy of 3 % at their respective central wavelength regions. First measurements are presented which demonstrate the wide applicability of the instrument. They show that key demands are met regarding the radiometric and spectral accuracy which is required for the intended remote sensing techniques.
Reference67 articles.
1. Aikio, M.: Hyperspectral prism-grating-prism imaging spectrograph, Technical Research Centre of Finland Heinola, Finland, 36–78, 2001.
2. Armstrong, J.: Programming Erlang, The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, USA, 1–383, 2007.
3. Babey, S. and Anger, C.: A compact airborne spectrographic imager (CASI), in: Quantitative remote sensing: An economic tool for the Nineties, 2, 1028–1031, 1989.
4. Baumgartner, A.: Characterization of Integrating Sphere Homogeneity with an Uncalibrated Imaging Spectrometer, in: Proc. WHISPERS 2013, 1–4, 2013.
5. Baumgartner, A., Gege, P., Köhler, C., Lenhard, K., and Schwarzmaier, T.: Characterisation methods for the hyperspectral sensor HySpex at DLR's calibration home base, in: Sensors, Systems, and Next-Generation Satellites XVI, vol. 85331H, https://doi.org/10.1117/12.974664, 2012.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献