Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments
-
Published:2011-03-25
Issue:3
Volume:8
Page:795-814
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Conrad R.,Noll M.,Claus P.,Klose M.,Bastos W. R.,Enrich-Prast A.
Abstract
Abstract. Methane is an important end product of degradation of organic matter in anoxic lake sediments. Methane is mainly produced by either reduction of CO2 or cleavage of acetate involving different methanogenic archaea. The contribution of the different methanogenic paths and of the diverse bacteria and archaea involved in CH4 production exhibits a large variability that is not well understood. Lakes in tropical areas, e.g. in Brazil, are wetlands with high potential impact on the global CH4 budget. However, they have hardly been studied with respect to methanogenesis. Therefore, we used samples from 16 different lake sediments in the Pantanal and Amazon region of Brazil to measure production of CH4, CO2, analyze the content of 13C in the products and in intermediately formed acetate, determine the abundance of bacterial and archaeal microorgansisms and their community composition and diversity by targeting the genes of bacterial and archaeal ribosomal RNA and of methyl coenzyme M reductase, the key enzyme of methanogenic archaea. These experiments were done in the presence and absence of methyl fluoride, an inhibitor of acetoclastic methanogenesis. While production rates of CH4 and CO2 were correlated to the content of organic matter and the abundance of archaea in the sediment, values of 13C in acetate, CO2, and CH4 were related to the 13C content of organic matter and to the path of CH4 production with its intrinsic carbon isotope fractionation. Isotope fractionation was small (average 10‰) for conversion of Corg to acetate-methyl, which was hardly further fractionated during CH4 production. However, fractionation was strong for CO2 conversion to CH4 (average 75‰), which generally accounted for >50% of total CH4 production. Canonical correspondence analysis did not reveal an effect of microbial community composition, despite the fact that it exhibited a pronounced variability among the different sediments.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference80 articles.
1. Alperin, M. J., Blair, N. E., Albert, D. B., Hoehler, T. M., and Martens, C. S.: Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment, Global Biogeochem. Cy., 6, 271–291, 1992. 2. Amann, R. I., Ludwig, W., and Schleifer, K. H.: Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 59, 143–169, 1995. 3. Avery, G. B., Shannon, R. D., White, J. R., Martens, C. S., and Alperin, M. J.: Effect of seasonal changes in the pathways of methanogenesis on the d13C values of pore water methane in a Michigan peatland, Global Biogeochem. Cy., 13, 475–484, 1999. 4. Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cy., 18, GB4009, https://doi.org/10.1029/2004GB002238, 2004. 5. Bastviken, D., Santoro, A. L., Marotta, H., Pinho, L. Q., Calheiros, D. F., Crill, P., and Enrich-Prast, A.: Methane emission from Pantanal, South America, during low water season: toward more comprehensive sampling, Environ. Sci. Technol., 44, 5450–5455, 2010.
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|