How relevant is the deposition of mercury onto snowpacks? – Part 1: A statistical study on the impact of environmental factors

Author:

Durnford D. A.,Dastoor A. P.,Steen A. O.,Berg T.,Ryzhkov A.,Figueras-Nieto D.,Hole L. R.,Pfaffhuber K. A.,Hung H.

Abstract

Abstract. A portion of the highly toxic methylmercury that bioaccumulates in aquatic life is created from mercury entering bodies of water with snowpack meltwater. To determine the importance of meltwater as a source of aquatic mercury, it is necessary to understand the environmental processes that govern the behavior of snowpack-related mercury. In this study we investigate relationships among 5 types of snowpack-related mercury observations and 20 model environmental variables. The observation types are the 24-h fractional loss of mercury from surface snow, and the concentrations of mercury in surface snow, seasonal snowpacks, the snowpack meltwater's ionic pulse, and long-term snowpack-related records. The model environmental variables include those related to atmospheric mercury, insolation, wind, atmospheric stability, snowpack physical characteristics, atmospheric pressure, and solid precipitation. Correlation coefficients and multiple linear regressions were calculated twice: once with all observations, and once with observations from locations presumably affected by oxidizing and stabilizing snowpack-related halogens excluded. We find that the presence of snowpack-related halogens has a significant impact on the behavior of snowpack-related mercury. Physically, snowpack-related mercury observations are most strongly controlled by the dry and wet depositions of oxidized mercury. The burial of mercury by fresh snowfalls and the wind driven ventilation of snowpacks are important processes. Indeed, in the absence of snowpack-related halogens, the 24-h fractional loss of mercury from surface snow is fully controlled by mercury deposition and surface-level atmospheric wind speed, stability, and surface pressure. The concentration of mercury in long-term records is affected by latitude, ventilation and surface pressure.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3