Parameterization of homogeneous ice nucleation for cloud and climate models based on classical nucleation theory

Author:

Khvorostyanov V. I.,Curry J. A.

Abstract

Abstract. A new analytical parameterization of homogeneous ice nucleation is developed based on extended classical nucleation theory including new equations for the critical radii of the ice germs, free energies and nucleation rates as the functions of the temperature and water saturation ratio simultaneously. By representing these quantities as separable products of the analytical functions of the temperature and supersaturation, analytical solutions are found for the integral-differential supersaturation equation and concentration of nucleated crystals. Parcel model simulations are used to illustrate the general behavior of various nucleation properties under various conditions, for justifications of the further key analytical simplifications, and for verification of the resulting parameterization. The final parameterization is based upon the values of the supersaturation that determines the current or maximum concentrations of the nucleated ice crystals. The crystal concentration is analytically expressed as a function of time and can be used for parameterization of homogeneous ice nucleation both in the models with small time steps and for substep parameterization in the models with large time steps. The crystal concentration is expressed analytically via the error functions or elementary functions and depends only on the fundamental atmospheric parameters and parameters of classical nucleation theory. The diffusion and kinetic limits of the new parameterization agree with previous semi-empirical parameterizations.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3