Preindustrial to present day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)
Author:
Naik V.,Voulgarakis A.,Fiore A. M.,Horowitz L. W.,Lamarque J.-F.,Lin M.,Prather M. J.,Young P. J.,Bergmann D.,Cameron-Smith P. J.,Cionni I.,Collins W. J.,Dalsøren S. B.,Doherty R.,Eyring V.,Faluvegi G.,Folberth G. A.,Josse B.,Lee Y. H.,MacKenzie I. A.,Nagashima T.,van Noije T. P. C.,Plummer D. A.,Righi M.,Rumbold S. T.,Skeie R.,Shindell D. T.,Stevenson D. S.,Strode S.,Sudo K.,Szopa S.,Zeng G.
Abstract
Abstract. We have analysed results from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), to explore trends in hydroxyl radical concentration (OH) and methane (CH4) lifetime since preindustrial times (1850) and gain a better understanding of their key drivers. For the present day (2000), the models tend to simulate higher OH abundances in the Northern Hemisphere versus Southern Hemisphere. Evaluation of simulated carbon monoxide concentrations, the primary sink for OH, against observations suggests low biases in the Northern Hemisphere that may contribute to the high north-south OH asymmetry in the models. A comparison of modelled and observed methyl chloroform lifetime suggests that the present day global multi-model mean OH concentration is slightly overestimated. Despite large regional changes, the modelled global mean OH concentration is roughly constant over the past 150 yr, due to concurrent increases in OH sources (humidity, tropospheric ozone, and NOx emissions), together with decreases in stratospheric ozone and increase in tropospheric temperature, compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC) emissions). The large intermodel diversity in the sign and magnitude of OH and methane lifetime changes over this period reflects differences in the relative importance of chemical and physical drivers of OH within each model. For the 1980 to 2000 period, we find that climate warming and a slight increase in mean OH leads to a 4.3 ± 1.9% decrease in the methane lifetime. Analysing sensitivity simulations performed by 10 models, we find that preindustrial to present day climate change decreased the methane lifetime by about 4 months, representing a negative feedback on the climate system. Further, using a subset of the models, we find that global mean OH increased by 46.4 ± 12.2% in response to preindustrial to present day anthropogenic NOx emission increases, and decreased by 17.3 ± 2.3%, 7.6 ± 1.5%, and 3.1 ± 3.0% due to methane burden, and anthropogenic CO, and NMVOC emissions increases, respectively.
Publisher
Copernicus GmbH
Reference93 articles.
1. Archibald, A. T., Cooke, M. C., Utembe, S. R., Shallcross, D. E., Derwent, R. G., and Jenkin, M. E.: Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene, Atmos. Chem. Phys., 10, 8097–8118, https://doi.org/10.5194/acp-10-8097-2010, 2010. 2. Barkley, M. P., Palmer, P. I., Ganzeveld, L., Arneth, A., Hågberg, D., Karl, T., Guenther, A., Paulot, F., Wennberg, P. O., Mao, J., Kurosu, T. P., Chance, K., Muller, J.-F., De Smedt, I., Van Roozendael, M., Chen, D., Wang, Y., and Yantosca, R. M.: Can a state of the art chemistry transport model simulate Amazonian tropospheric chemistry?, J. Geophys. Res., 16, D16302, https://doi.org/10.1029/2011JD015893, 2011. 3. Berntsen, T. K., Isaksen, I. S. A., Myhre, G., Fuglestvedt, J. S., Stordal, F., Larsen, T. A., Freckleton, R. S., and Shine, K. P.: Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing, J. Geophys. Res., 102, 28101–28126, https://doi.org/10.1029/97JD02226, 1997. 4. Bousquet, P., Hauglustaine, D. A., Peylin, P., Carouge, C., and Ciais, P.: Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform, Atmos. Chem. Phys., 5, 2635–2656, https://doi.org/10.5194/acp-5-2635-2005, 2005. 5. Bousserez, N., Attié, J. L., Peuch, V. H., Michou, M., Pfister, G., Edwards, D., Emmons, L., Mari, C., Barret, B., Arnold, S. R., Heckel, A., Richert, A., Schlager, H., Lewis, A., Avery, M., Sachse, G., Browell, E. V., and Hair, J. W.: Evaluation of the MOCAGE chemistry transport model during the ICARTT/ITOP experiment, J. Geophys., Res., 112, D10S42, https://doi.org/10.1029/2006JD007595, 2007.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|