Observationally-constrained estimates of global small-mode AOD

Author:

Lee K.ORCID,Chung C. E.ORCID

Abstract

Abstract. Small aerosols are mostly anthropogenic, and an area average of the small-mode aerosol optical depth (sAOD) is a powerful and independent measure of anthropogenic aerosol emission. We estimate AOD and sAOD globally on a monthly time scale from 2001 to 2010 by integrating satellite-based (MODIS and MISR) and ground-based (AERONET) observations. For sAOD, three integration methods were developed to maximize the influence of AERONET data and ensure consistency between MODIS, MISR and AERONET sAOD data. We evaluated each method by applying the technique with fewer AERONET data and comparing its output with the unused AERONET data. The best performing method gives an overall error of 13 ± 2%, compared with an overall error of 62% in simply using MISR sAOD, and this method takes advantage of an empirical relationship between the Ångström exponent (AE) and fine mode fraction (FMF). This relationship is obtained by analyzing AERONET data. Using our integrated data, we find that the global 2001–2010 average of 500 nm AOD and sAOD is 0.17 and 0.094, respectively. sAOD over eastern China is several times as large as the global average. The linear trend from 2001 to 2010 is found to be slightly negative in global AOD or global sAOD. In India and eastern China combined, however, sAOD increased by more than 4% against a backdrop of decreasing AOD and large-mode AOD. On the contrary to India and China, the west (Western Europe and US/Canada combined) is found to have a sAOD reduction of −20%. These results quantify the overall anthropogenic aerosol emission reduction in the west, and rapidly deteriorating conditions in Asia. Moreover, our results in the west are consistent with the so-called surface brightening phenomenon in the recent decades.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3