Rain process models and convergence to point processes

Author:

Hottovy ScottORCID,Stechmann Samuel N.

Abstract

Abstract. A variety of stochastic models have been used to describe time series of precipitation or rainfall. Since many of these stochastic models are simplistic, it is desirable to develop connections between the stochastic models and the underlying physics of rain. Here, convergence results are presented for such a connection between two stochastic models: (i) a stochastic moisture process as a physics-based description of atmospheric moisture evolution and (ii) a point process for rainfall time series as spike trains. The moisture process has dynamics that switch after the moisture hits a threshold, which represents the onset of rainfall and thereby gives rise to an associated rainfall process. This rainfall process is characterized by its random holding times for dry and wet periods. On average, the holding times for the wet periods are much shorter than the dry ones, and, in the limit of short wet periods, the rainfall process converges to a point process that is a spike train. Also, in the limit, the underlying moisture process becomes a threshold model with a teleporting boundary condition. To establish these limits and connections, formal asymptotic convergence is shown using the Fokker–Planck equation, which provides some intuitive understanding. Also, rigorous convergence is proved in mean square with respect to continuous functions of the moisture process and convergence in mean square with respect to generalized functions of the rain process.

Funder

Division of Mathematical Sciences

Publisher

Copernicus GmbH

Subject

General Medicine

Reference44 articles.

1. Abbott, T. H., Stechmann, S. N., and Neelin, J. D.: Long temporal autocorrelations in tropical precipitation data and spike train prototypes, Geophys. Res. Lett., 43, 11–472, 2016. a, b, c, d

2. Ahmed, F. and Neelin, J. D.: Explaining scales and statistics of tropical precipitation clusters with a stochastic model, J. Atmos. Sci., 76, 3063–3087, 2019. a

3. Albano, G., Giorno, V., Nobile, A. G., and Ricciardi, L. M.: Modeling refractoriness for stochastically driven single neurons, Scientiae Mathematicae Japonicae, 67, 173–190, 2008. a

4. Bender, C. M. and Orszag, S. A.: Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory, Springer Science & Business Media, ISBN 0387989315, 2013. a, b

5. Bhat, V. N.: Renewal approximations of the switched Poisson processes and their applications to queueing systems, J. Oper. Res. Soc., 45, 345–353, 1994. a

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orlicz risks for assessing stochastic streamflow environments: a static optimization approach;Stochastic Environmental Research and Risk Assessment;2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3