Temporal dynamics of ikaite in experimental sea ice
-
Published:2014-08-08
Issue:4
Volume:8
Page:1469-1478
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Rysgaard S., Wang F.ORCID, Galley R. J., Grimm R., Notz D.ORCID, Lemes M., Geilfus N.-X., Chaulk A., Hare A. A., Crabeck O., Else B. G. T., Campbell K., Sørensen L. L.ORCID, Sievers J.ORCID, Papakyriakou T.
Abstract
Abstract. Ikaite (CaCO3 · 6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air–sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an outdoor pool of the Sea-ice Environmental Research Facility (SERF) in Manitoba, Canada. During the experiment, ikaite precipitated in sea ice when temperatures were below −4 °C, creating three distinct zones of ikaite concentrations: (1) a millimeter-to-centimeter-thin surface layer containing frost flowers and brine skim with bulk ikaite concentrations of >2000 μmol kg−1, (2) an internal layer with ikaite concentrations of 200–400 μmol kg−1, and (3) a bottom layer with ikaite concentrations of <100 μmol kg−1. Snowfall events caused the sea ice to warm and ikaite crystals to dissolve. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The observed ikaite concentrations were on the same order of magnitude as modeled by FREZCHEM, which further supports the notion that ikaite concentration in sea ice increases with decreasing temperature. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This could have a major implication for CO2 exchange with the atmosphere and ocean that has not been accounted for previously.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference39 articles.
1. Assur, A.: Composition of sea ice and its tensile strength, U.S. Army snow ice and permafrost research establishment, research report 44, corps of engineers, Wilmette, Illinois, December 1960. 2. Barber D. G., Ehn, J. K., Pucko, M., Rysgaard, S., Papakyriakou, T., Deming, J., Galley, R., and Søgaard, D.: Frost flowers on young Arctic sea ice: The climatic, chemical and microbial significance of an emerging ice type, J. Geophys. Res.-Atmos., revised, 2014. 3. Bates, N. R. and Mathis, J. T.: The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 6, 2433–2459, https://doi.org/10.5194/bg-6-2433-2009, 2009. 4. Bennington, K. O.: Desalination features in natural sea ice, J. Glaciol., 6, 845–857, 1967. 5. Bischoff, J. L., Fitzpatrick, J. A., and Rosenbauer, R. J.: The solubility and stabilization of ikaite (CaCO3·6H2O) from 0° to 25 °C: Environmental and paleoclimatic implications for thinolite tufa, J. Geol., 101, 21–33, 1993.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|