CROP YIELD ESTIMATION IN THE NORTH CHINA PLAIN FROM 2001 TO 2016 USING MULTI-SOURCE REMOTE SENSING DATA AND PROCESS-BASED FGM MODEL

Author:

Wu Q.,Wang X.,Jiang J.,Chen S.

Abstract

Abstract. Gross primary productivity (GPP) is an essential indicator of vegetation growth that reflects ecosystem function. GPP is the original source of energy entering cropland ecosystem and thus could serve as a direct indicator of crop yield. In the context of increasing population, changing climate, and decreasing available resources, accurate monitoring and forecasting of food and crop yields play an essential role in sustainable human development. In this study, the process-based Farquhar GPP model (FGM) driven by multisource remote sensing data was implemented to estimate the spatial and temporal dynamics of GPP in crop-growing areas of the North China Plain from 2001 to 2016. We found that the GPP of crops in the North China Plain is relatively high in the southern provinces while lower in the northern part. The GPP values showed a significant increasing trend from 2001 to 2016 (+2.19 Mt C yr−1, P<0.05). Based on crop yield statistical yearbook, we found that GPP is well correlated with crop yield (R2 = 0.98, RMSE = 10.4 Mt yr−1). Thus, we constructed an empirical regression model between GPP and crop yield (i.e., ‘GPP-yield’ empirical model). Finally, time-series GPP data and the ‘ GPP-yield ’ model were applied the crop yield in the North China Plain with spatial and temporal continuity. We found that the crop yield in the North China Plain changed in accordance with GPP, and also showed a significant increasing trend from 2001 to 2016, with a mean increasing rate of +2.84 Mt yr−1 (P<0.05, R2 = 0.16, RMSE = 31.73 Mt yr−1). This study proved an example of large-scale crop yield estimation using multi-source remote sensing data.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3