A NOVEL INTRINSIC IMAGE DECOMPOSITION METHOD TO RECOVER ALBEDO FOR AERIAL IMAGES IN PHOTOGRAMMETRY PROCESSING

Author:

Song S.,Qin R.

Abstract

Abstract. Recovering surface albedos from photogrammetric images for realistic rendering and synthetic environments can greatly facilitate its downstream applications in VR/AR/MR and digital twins. The textured 3D models from standard photogrammetric pipelines are suboptimal to these applications because these textures are directly derived from images, which intrinsically embedded the spatially and temporally variant environmental lighting information, such as the sun illumination, direction, causing different looks of the surface, making such models less realistic when used in 3D rendering under synthetic lightings. On the other hand, since albedo images are less variable by environmental lighting, it can, in turn, benefit basic photogrammetric processing. In this paper, we attack the problem of albedo recovery for aerial images for the photogrammetric process and demonstrate the benefit of albedo recovery for photogrammetry data processing through enhanced feature matching and dense matching. To this end, we proposed an image formation model with respect to outdoor aerial imagery under natural illumination conditions; we then, derived the inverse model to estimate the albedo by utilizing the typical photogrammetric products as an initial approximation of the geometry. The estimated albedo images are tested in intrinsic image decomposition, relighting, feature matching, and dense matching/point cloud generation results. Both synthetic and real-world experiments have demonstrated that our method outperforms existing methods and can enhance photogrammetric processing.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3