EFFECT OF LABEL NOISE IN SEMANTIC SEGMENTATION OF HIGH RESOLUTION AERIAL IMAGES AND HEIGHT DATA

Author:

Maiti A.,Oude Elberink S. J.,Vosselman G.ORCID

Abstract

Abstract. The performance of deep learning models in semantic segmentation is dependent on the availability of a large amount of labeled data. However, the influence of label noise, in the form of incorrect annotations, on the performance is significant and mostly ignored. This is a big concern in remote sensing applications, wherein acquired datasets are spatially limited, labeling is done by domain experts with possible sources of high inter-and intra-observer variability leading to erroneous predictions. In this paper, we first simulate the label noise while conducting experiments on two different datasets with very high-resolution aerial images, height data, and inaccurate labels, responsible for the training of deep learning models. We then focus on the effect of these noises on the model performance. Different classes respond differently to the label noise. The typical size of an object belonging to a class is a crucial factor regarding the class-specific performance of the model trained with erroneous labels. Errors caused by relative shifts of labels are the most influential label errors. The model is generally more tolerant of the random label noise than other label errors. It has been observed that the accuracy gets reduced by at least 3% while 5% of label pixels are erroneous. In this regard, our study provides a new perspective of evaluating and quantifying the propagation of label noise in the model performance that is indeed important for adopting reliable semantic segmentation practices.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving New Zealand’s vegetation mapping using weakly supervised deep learning;2024 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS);2024-04-08

2. AIO2: Online Correction of Object Labels for Deep Learning With Incomplete Annotation in Remote Sensing Image Segmentation;IEEE Transactions on Geoscience and Remote Sensing;2024

3. Bibliography;Machine Learning with Noisy Labels;2024

4. Noisy-label problems and datasets;Machine Learning with Noisy Labels;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3