ESTIMATION OF SOIL MOISTURE USING SENTINEL-1 AND SENTINEL-2 IMAGES

Author:

Esmaeili Sarteshnizi R.,Sahebi Vayghan S.,Jazirian I.

Abstract

Abstract. Soil moisture is a vital parameter for environmental research such as agriculture, hydrology, natural resources, environmental hazards, etc. It is essential to have timely soil moisture maps prepared with high accuracy, speed, and low cost. Therefore, in this study, an attempt was made to evaluate the efficiency of Sentinel 1 and 2 sensor images in some cases to prepare a soil moisture map. For this study, soil moisture was sampled at 24 points in the common area of the two images in the south of Malard city, Tehran province (Iran) was obtained by survey. After pre-processing the images, the values of bands 1 to 7, 11, and 12 of the Sentinel-2 and applying filters (Gaussian, Laplacian, Majority, Morphology, and rank) to the Sentinel-1 soil moisture were calculated. Moreover, R, R2, and RMSE were calculated using soil moisture obtained from sample points. Furthermore, Maps of data used by sentinel-1 and sentinel-2 images were obtained. Using maps of data shows the potential of applied filters to sentinel-1 and bands used for sentinel-2 in the estimation of soil moisture. According to the results, the highest coefficient of determination (R2) for the Sentinel-2 is related to band 6 with 84%. The result of Sentinel-1 demonstrated that the highest coefficient of determination was related to the Rank filter (54%). The highest correlation of the Sentinel-2 and the Sentinel-1 is related to band 6 with 74% and the Rank filter with 46%, respectively. The lowest RMSE in Sentinel-2 and Sentinel-1 is related to band three (1.64 %) and rank filter (1.03 %), respectively. According to the obtained results, band 6 in the Sentinel-2 and filter in Sentinel-1 have better performance among the data and methods used. However, it is emphasized that using more samples can be tested for improving results.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3