DETECTION OF THE ANGLE CHANGE BETWEEN CAMERA AND STAR TRACKER BASED ON STAR OBSERVATION

Author:

Guan Z.,Zhang G.,Jiang Y.,Zhong X.,Deng M.,Li B.,Zhang H.

Abstract

Abstract. Satellites in orbit are affected by changes in thermal environment and other factors, and the angle of optical axis between the camera and star tracker (Cam-ST) changes. As a result, the attitude measurement error of the orbital period appears, leading to a decrease in the accuracy of the geometric positioning of the image. This paper proposes a star observation mode, using the stars as the control point, so as to detect the angle change between the Cam-ST throughout the orbital period. This paper is based on 20 sets of star observation data from the Jilin-1 video satellite. Through methods such as star point extraction and pre-recognition, the camera's pointing in the inertial space is obtained. Then the angle with the optical axis of star tracker (ST) is calculated, and the error law of the angle between the Cam-ST is obtained. The experimental results show that the Cam-ST optical axis angle will produce a regular error change during the satellite orbit period. After fitting, the error of the angle between the camera and the star tracker (Cam-ST) is reduced from 47.86" to 5.63". Through the method of star observation, the errors between Cam-ST angle can be effectively improved. The high accuracy of the camera's pointing measurement within the orbit period range is of great significance for satellite global mapping without ground control points (GCPs).

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Qualification of bracket design for star tracker: numerical and experimental evaluation;CEAS Space Journal;2024-05-22

2. Geometric Exterior Elements Calibration of Jilin-1 Linear Array Satellites Based on Star Observation;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3