Implementing spatially and temporally varying snow densities into the GlobSnow snow water equivalent retrieval
-
Published:2023-02-13
Issue:2
Volume:17
Page:719-736
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Venäläinen PinjaORCID, Luojus KariORCID, Mortimer Colleen, Lemmetyinen JuhaORCID, Pulliainen Jouni, Takala Matias, Moisander Mikko, Zschenderlein Lina
Abstract
Abstract. Snow water equivalent (SWE) is a valuable characteristic of snow cover, and it can be estimated using passive spaceborne radiometer measurements. The radiometer-based GlobSnow SWE retrieval methodology, which assimilates weather station snow depth observations into the retrieval, has improved the reliability and accuracy of SWE retrieval when compared to stand-alone radiometer SWE retrievals. To further improve the GlobSnow SWE retrieval methodology, we investigate implementing spatially and temporally varying snow densities into the retrieval procedure. Thus far, the GlobSnow SWE retrieval has used a constant snow density throughout the retrieval despite differing locations, snow depth, or time of winter. This constant snow density is a known source of inaccuracy in the retrieval. Four different versions of spatially and temporally varying snow densities are tested over a 10-year period (2000–2009). These versions use two different spatial interpolation techniques: ordinary Kriging interpolation and inverse distance weighted regression (IDWR). All versions were found to improve the
SWE retrieval compared to the baseline GlobSnow v3.0 product, although
differences between versions are small. Overall, the best results were
obtained by implementing IDWR-interpolated densities into the algorithm,
which reduced RMSE (root mean square error) and MAE (mean absolute error) by about 4 mm (8 % improvement) and 5 mm (16 % improvement) when compared to the baseline GlobSnow product, respectively. Furthermore, implementing varying snow densities into the SWE retrieval improves the magnitude and seasonal evolution of the Northern Hemisphere snow mass estimate compared to the baseline product and a product post-processed with varying snow densities.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference44 articles.
1. Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature, 438,
303–309, https://doi.org/10.1038/nature04141, 2005. 2. Bormann, K. J., Westra, S., Evans, J. P., and McCabe, M. F.: Spatial and temporal variability in seasonal snow density, J. Hydrol., 484, 63–73,
https://doi.org/10.1016/j.jhydrol.2013.01.032, 2013. 3. Brown, R., Tapsoba, D., and Derksen, C.: Evaluation of snow water equivalent dataset over the Saint-Maurice river basin region of southern Quebec, Hydrol. Process., 32: 2748–2764, https://doi.org/10.1002/hyp.13221, 2018. 4. Brown, R., Fang, B., and Mudryk, L.: Update of Canadian Historical Snow
Survey Data and Analysis of Snow Water Equivalent Trends, 1967–2016,
Atmos.-Ocean, 57, 149–156, https://doi.org/10.1080/07055900.2019.1598843, 2019. 5. Bulygina, O. N., Groisman, P. Y., Razuvaev, V. N., and Korshunova, N. N.:
Changes in snow cover characteristics over Northern Eurasia since 1966,
Environ. Res. Lett., 6, 045204, https://doi.org/10.1088/1748-9326/6/4/045204, 2011.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|