Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign
-
Published:2016-03-03
Issue:4
Volume:16
Page:2659-2673
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Savarino Joël, Vicars William C., Legrand Michel, Preunkert SuzanneORCID, Jourdain Bruno, Frey Markus M.ORCID, Kukui Alexandre, Caillon Nicolas, Gil Roca Jaime
Abstract
Abstract. Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO2 = NOx). The unique and distinctive 17O excess (Δ17O = δ17O − 0.52 × δ18O) of ozone, which is transferred to NOx via oxidation, is a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O excess within the NOx cycle is critical in polar areas, where there exists the possibility of extending atmospheric investigations to the glacial–interglacial timescale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C (East Antarctic Plateau) during the austral summer of 2011/2012. Nitrate isotope analysis has been here combined for the first time with key precursors involved in nitrate production (NOx, O3, OH, HO2, RO2, etc.) and direct observations of the transferrable Δ17O of surface ozone, which was measured at Dome C throughout 2012 using our recently developed analytical approach. Assuming that nitrate is mainly produced in Antarctica in summer through the OH + NO2 pathway and using concurrent measurements of OH and NO2, we calculated a Δ17O signature for nitrate on the order of (21–22 ± 3) ‰. These values are lower than the measured values that ranged between 27 and 31 ‰. This discrepancy between expected and observed Δ17O(NO3−) values suggests the existence of an unknown process that contributes significantly to the atmospheric nitrate budget over this East Antarctic region. However, systematic errors or false isotopic balance transfer functions are not totally excluded.
Funder
Agence Nationale de la Recherche Institut Polaire Français Paul Emile Victor
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference96 articles.
1. Adon, M., Galy-Lacaux, C., Yoboué, V., Delon, C., Lacaux, J. P., Castera,
P., Gardrat, E., Pienaar, J., Al Ourabi, H., Laouali, D., Diop, B.,
Sigha-Nkamdjou, L., Akpo, A., Tathy, J. P., Lavenu, F., and Mougin, E.: Long
term measurements of sulfur dioxide, nitrogen dioxide, ammonia, nitric acid
and ozone in Africa using passive samplers, Atmos. Chem. Phys., 10,
7467-7487, https://doi.org/10.5194/acp-10-7467-2010, 2010. 2. Alexander, B., Savarino, J., Kreutz, K., and Thiemens, M. H.: Impact of
preindustrial biomass-burning emissions on the oxidative pathways of
tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303,
https://doi.org/10.1029/2003JD004218, 2004. 3. Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A.,
and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based
on a global model of the oxygen isotopic composition (Δ17O) of
atmospheric nitrate, Atmos. Chem. Phys., 9, 5043–5056,
https://doi.org/10.5194/acp-9-5043-2009, 2009. 4. Anastasio, C. and Chu, L.: Photochemistry of Nitrous Acid (HONO) and Nitrous
Acidium Ion (H2ONO+) in Aqueous Solution and Ice, Environ. Sci.
Technol., 43, 1108–1114, https://doi.org/10.1021/es802579a, 2009. 5. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F.,
Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic
and photochemical data for atmospheric chemistry: Volume I – gas phase
reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4,
1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|