An 11-year record of XCO<sub>2</sub> estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm
-
Published:2022-01-31
Issue:1
Volume:14
Page:325-360
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Taylor Thomas E.ORCID, O'Dell Christopher W., Crisp DavidORCID, Kuze AkhikoORCID, Lindqvist Hannakaisa, Wennberg Paul O.ORCID, Chatterjee AbhishekORCID, Gunson Michael, Eldering AnnmarieORCID, Fisher Brendan, Kiel MatthäusORCID, Nelson Robert R.ORCID, Merrelli AronneORCID, Osterman Greg, Chevallier FrédéricORCID, Palmer Paul I.ORCID, Feng Liang, Deutscher Nicholas M.ORCID, Dubey Manvendra K.ORCID, Feist Dietrich G.ORCID, García Omaira E.ORCID, Griffith David W. T.ORCID, Hase Frank, Iraci Laura T.ORCID, Kivi RigelORCID, Liu ChengORCID, De Mazière Martine, Morino IsamuORCID, Notholt Justus, Oh Young-SukORCID, Ohyama HirofumiORCID, Pollard David F.ORCID, Rettinger Markus, Schneider MatthiasORCID, Roehl Coleen M.ORCID, Sha Mahesh KumarORCID, Shiomi KeiORCID, Strong KimberlyORCID, Sussmann Ralf, Té YaoORCID, Velazco Voltaire A.ORCID, Vrekoussis MihalisORCID, Warneke Thorsten, Wunch DebraORCID
Abstract
Abstract. The Thermal And Near infrared Sensor for carbon Observation – Fourier Transform Spectrometer (TANSO-FTS) on the Japanese Greenhouse gases Observing SATellite (GOSAT) has been returning data since April 2009. The version 9 (v9) Atmospheric Carbon Observations from Space (ACOS) Level 2 Full Physics (L2FP) retrieval algorithm (Kiel et al., 2019) was used to derive estimates of carbon dioxide (CO2) dry air mole fraction (XCO2) from the TANSO-FTS measurements collected over its first 11 years of operation. The bias correction and quality filtering of the L2FP XCO2 product were evaluated using estimates derived from the Total Carbon Column Observing Network (TCCON) as well as values simulated from a suite of global atmospheric inversion systems (models) which do not assimilate satellite-derived CO2. In addition, the v9 ACOS GOSAT XCO2 results were compared with collocated XCO2 estimates derived from NASA's Orbiting Carbon Observatory-2 (OCO-2), using the version 10 (v10) ACOS L2FP algorithm. These tests indicate that the v9 ACOS GOSAT XCO2 product has improved throughput, scatter, and bias, when compared to the earlier v7.3 ACOS GOSAT product, which extended through mid 2016. Of the 37 million soundings collected by GOSAT through June 2020, approximately 20 % were selected for processing by the v9 L2FP algorithm after screening for clouds and other artifacts. After post-processing, 5.4 % of the soundings (2×106 out of 37×106) were assigned a “good” XCO2 quality flag, as compared to 3.9 % in v7.3 (<1 ×106 out of 24×106). After quality filtering and bias correction, the differences in XCO2 between ACOS GOSAT v9 and both TCCON and models have a scatter (1σ) of approximately 1 ppm for ocean-glint observations and 1 to 1.5 ppm for land observations. Global mean biases against TCCON and models are less than approximately 0.2 ppm. Seasonal mean biases relative to the v10 OCO-2 XCO2 product are of the order of 0.1 ppm for observations over land. However, for ocean-glint observations, seasonal mean biases relative to OCO-2 range from 0.2 to 0.6 ppm, with substantial variation in time and latitude. The ACOS GOSAT v9 XCO2 data are available on the NASA Goddard Earth Science Data and Information Services Center (GES-DISC)
in both the per-orbit full format
(https://doi.org/10.5067/OSGTIL9OV0PN, OCO-2 Science Team et al., 2019b)
and in the per-day lite format
(https://doi.org/10.5067/VWSABTO7ZII4, OCO-2 Science Team et al., 2019a).
In addition, a new set of monthly super-lite files, containing only the most essential variables for each satellite observation, has been generated to provide entry level users with a light-weight satellite product for initial exploration (CaltechDATA, https://doi.org/10.22002/D1.2178, Eldering, 2021).
The v9 ACOS Data User's Guide (DUG) describes best-use practices for the GOSAT data (O'Dell et al., 2020). The GOSAT v9 data set should be especially useful for studies of carbon cycle phenomena that span a full decade or more and may serve as a useful complement to the shorter OCO-2 v10 data set, which begins in September 2014.
Funder
European Commission Australian Research Council Bundesministerium für Wirtschaft und Energie European Space Agency Université de La Réunion National Centre for Earth Observation Academy of Finland Jet Propulsion Laboratory Korea Meteorological Administration
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference95 articles.
1. Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S., Stephens, B., Andrews, A., and Worthy, D.: Global CO2 fluxes estimated from GOSAT retrievals of total column CO2, Atmos. Chem. Phys., 13, 8695–8717, https://doi.org/10.5194/acp-13-8695-2013, 2013. a 2. Blumenstock, T., Hase, F., Schneider, M., Garcia, O. E., and Sepulveda, E.:
TCCON data from Izaña (ES), Release GGG2014R1, TCCON data archive, hosted
by CaltechDATA [data set], https://doi.org/10.14291/TCCON.GGG2014.IZANA01.R1, 2017. a 3. Buchwitz, M., Reuter, M., Schneising, O., Noël, S., Gier, B., Bovensmann, H., Burrows, J. P., Boesch, H., Anand, J., Parker, R. J., Somkuti, P., Detmers, R. G., Hasekamp, O. P., Aben, I., Butz, A., Kuze, A., Suto, H., Yoshida, Y., Crisp, D., and O'Dell, C.: Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016, Atmos. Chem. Phys., 18, 17355–17370, https://doi.org/10.5194/acp-18-17355-2018, 2018. a 4. Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I.,
Frankenberg, C., Hartmann, J., Tran, H., Kuze, A., Aleks, G. K., Toon, G.,
Wunch, D., Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R.,
Messerschmidt, J., Notholt, J., and Warneke, T.: Toward accurate CO2 and
CH4 observations from GOSAT, Geophys. Res. Lett., 38, L14812,
https://doi.org/10.1029/2011GL047888, 2011. a 5. Byrne, B., Liu, J., Lee, M., Baker, I., Bowman, K. W., Deutscher, N. M., Feist,
D. G., Griffith, D. W. T., Iraci, L. T., Kiel, M., Kimball, J. S., Miller,
C. E., Morino, I., Parazoo, N. C., Petri, C., Roehl, C. M., Sha, M. K.,
Strong, K., Velazco, V. A., Wennberg, P. O., and Wunch, D.: Improved
constraints on northern extratropical CO2 fluxes obtained by combining
surface-based and space-based atmospheric CO2 measurements, J.
Geophys. Res.-Atmos., 125, e2019JD032 029,
https://doi.org/10.1029/2019JD032029, 2020. a
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|