Reconstructing ocean subsurface salinity at high resolution using a machine learning approach
-
Published:2022-11-18
Issue:11
Volume:14
Page:5037-5060
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Tian Tian, Cheng LijingORCID, Wang Gongjie, Abraham John, Wei Wangxu, Ren ShiheORCID, Zhu Jiang, Song Junqiang, Leng Hongze
Abstract
Abstract. A gridded ocean subsurface salinity dataset with global
coverage is useful for research on climate change and its variability. Here,
we explore the feed-forward neural network (FFNN) approach to reconstruct a
high-resolution (0.25∘ × 0.25∘) ocean
subsurface (1–2000 m) salinity dataset for the period 1993–2018 by merging
in situ salinity profile observations with high-resolution (0.25∘ × 0.25∘) satellite remote-sensing altimetry absolute
dynamic topography (ADT), sea surface temperature (SST), sea surface wind
(SSW) field data, and a coarse-resolution (1∘ × 1∘) gridded salinity product. We show that the FFNN can
effectively transfer small-scale spatial variations in ADT, SST, and SSW
fields into the 0.25∘ × 0.25∘ salinity field.
The root-mean-square error (RMSE) can be reduced by ∼11 %
on a global-average basis compared with the 1∘ × 1∘ salinity gridded field. The reduction in RMSE is much larger in
the upper ocean than the deep ocean because of stronger mesoscale
variations in the upper layers. In addition, the new 0.25∘ × 0.25∘ reconstruction shows more realistic spatial signals in the
regions with strong mesoscale variations, e.g., the Gulf Stream, Kuroshio,
and Antarctic Circumpolar Current regions, than the 1∘ × 1∘ resolution product, indicating the efficiency of the machine
learning approach in bringing satellite observations together with in situ
observations. The large-scale salinity patterns from 0.25∘ × 0.25∘ data are consistent with the 1∘ × 1∘ gridded salinity field, suggesting the persistence
of the large-scale signals in the high-resolution reconstruction. The
successful application of machine learning in this study provides an
alternative approach for ocean and climate data reconstruction that can
complement the existing data assimilation and objective analysis methods.
The reconstructed IAP0.25∘ dataset is freely available at
https://doi.org/10.57760/sciencedb.o00122.00001
(Tian et al., 2022).
Funder
National Natural Science Foundation of China Youth Innovation Promotion Association of the Chinese Academy of Sciences
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference97 articles.
1. Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L.,
Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R.,
Makarenkov, V., and Nahavandi, S.: A review of uncertainty quantification in
deep learning: Techniques, applications and challenges, Inf. Fusion, 76, 243–297,
https://doi.org/10.1016/j.inffus.2021.05.008, 2021. 2. Abram, N., Gattuso, J.-P., Prakash, A., Cheng, L., Chidichimo, M., Crate,
S., Enomoto, H., Garschagen, M., Gruber, N., Harper, S., Holland, E.,
Kudela, R. M., Rice, J., Steffen, K., and von Schuckmann, K.: Framing and
Context of the Report, in: IPCC Special Report on the Ocean and Cryosphere
in a Changing Climate, IPCC, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 73–129,
https://doi.org/10.1017/9781009157964.003, 2019. 3. Adler, R. F., Sapiano, M. R. P., Huffman, G. J., Wang, J. J., Gu, G.,
Bolvin, D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P.,
Ferraro, R., and Shin, D. B.: The Global Precipitation Climatology Project
(GPCP) monthly analysis (New Version 2.3) and a review of 2017 global
precipitation, Atmosphere (Basel), 9, 138, https://doi.org/10.3390/atmos9040138,
2018. 4. Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C.,
Smith, D. K., and Gombos, D.: A cross-calibrated, multiplatform ocean
surface wind velocity product for meteorological and oceanographic
applications, B. Am. Meteorol. Soc., 92, 157–174,
https://doi.org/10.1175/2010BAMS2946.1, 2011. 5. Auger, M., Morrow, R., Kestenare, E., Sallée, J. B., and Cowley, R.:
Southern Ocean in-situ temperature trends over 25 years emerge from
interannual variability, Nat. Commun., 12, 514,
https://doi.org/10.1038/s41467-020-20781-1, 2021.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|