Abstract
Abstract. Soil freeze–thaw processes play a fundamental role in the hydrology, geomorphology, ecology, thermodynamics, and soil chemistry of cold regions' landscapes. In understanding these processes, the temperature of the soil is used as a proxy to represent the partitioning of soil ice and water content via a soil freezing characteristic curve (SFCC). This mathematical construct relates the soil ice content to a specific temperature for a particular soil. SFCCs depend on many factors, including soil properties (e.g., porosity and composition), soil pore water pressure, dissolved salts, (hysteresis in) freezing/thawing point depression, and the degree of saturation, all of which can be site-specific and time-varying characteristics. SFCCs have been measured using various methods for diverse soils since 1921, but, to date, these data have not been broadly compared. This is in part because they had not previously been compiled in a single dataset. The dataset presented in this publication includes SFCC data digitized or received from authors, and it includes both historic and modern studies. The data are stored in an open-source repository, and an R package is available to facilitate their use. Aggregating the data has pointed out some data gaps, namely that there are few studies on coarse soils and comparably few in situ measurements of SFCCs in mountainous environments. It is hoped that this dataset (https://doi.org/10.5281/zenodo.5592825; Devoie et al., 2022a) will aid in the development of SFCC theory and improve SFCC approximations in soil freeze–thaw modelling activities.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
General Earth and Planetary Sciences
Reference116 articles.
1. Akimov, Y. P.: Sravnitelnaya ocenka metodov opredelenya soderzanya niezamierzszey vody v merzlyh gruntah (Assessment of methods to determine the unfrozen water content in frozen soils, in Russian), Merzlotnye Issledovania, 17, 190–195, 1978. a
2. Amankwah, S., Ireson, A., Maulé, C., Brannen, R., and Mathias, S.: A Model for the Soil Freezing Characteristic Curve That Represents the Dominant Role of Salt Exclusion, Water Resour. Res., 57, e2021WR030070, https://doi.org/10.1029/2021WR030070, 2021. a
3. Amiri, E. A., Craig, J. R., and Kurylyk, B. L.: A theoretical extension of the soil freezing curve paradigm, Adv. Water Resour., 111, 319–328, https://doi.org/10.1016/j.advwatres.2017.11.021, 2018. a, b
4. Anbergen, H., Rühaak, W., Frank, J., and Sass, I.: Numerical simulation of a freeze–thaw testing procedure for borehole heat exchanger grouts, Can. Geotech. J., 52, 1087–1100, https://doi.org/10.1139/cgj-2014-0177, 2015. a
5. Anderson, D. M.: Undercooling, freezing point depression, and ice nucleation of soil water, Israel J. Chem., 6, 349–355, 1968. a
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献