Comparison of UV–VIS and FDOM sensors for in situ monitoring of stream DOC concentrations

Author:

Lee E.-J.,Yoo G.-Y.,Jeong Y.,Kim K.-U.,Park J.-H.,Oh N.-H.

Abstract

Abstract. Optical measurements using ultraviolet–visible (UV–VIS) spectrophotometric sensors and fluorescent dissolved organic matter (FDOM) sensors have recently been used as proxies of dissolved organic carbon (DOC) concentrations in streams and rivers at a high temporal resolution. Despite the merits of the sensors, temperature changes and particulate matter in water can interfere with the sensor readings, over- or underestimating DOC concentrations. However, little efforts have been made to compare responses of the two types of the sensors to critical interferences such as temperature and turbidity. The performance of a UV–VIS sensor and an FDOM sensor was compared in both laboratory experiments and in situ monitoring in a forest stream in Korea during three storm events. Although the UV–VIS sensor did not require temperature correction in laboratory experiments using the forest stream water, the deviations of its values from the DOC concentrations measured with a TOC analyzer increased linearly as turbidity increased. In contrast, the FDOM sensor outputs decreased significantly as temperature or turbidity increased, requiring temperature and turbidity correction for in situ monitoring of DOC concentrations. The results suggest that temperature correction is relatively straightforward but turbidity correction may not be simple because the attenuation of light by particles can significantly reduce the sensitivity of the sensors in highly turbid waters. Shifts in composition of fluorophores also need to be carefully tracked using periodically collected samples since light absorbance and fluorescence can vary as the concentrations of dominant fluorophores change.

Funder

National Research Foundation of Korea

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3