The Orbiting Carbon Observatory-2: first 18 months of science data products
-
Published:2017-02-15
Issue:2
Volume:10
Page:549-563
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Eldering AnnmarieORCID, O'Dell Chris W., Wennberg Paul O.ORCID, Crisp DavidORCID, Gunson Michael R., Viatte Camille, Avis Charles, Braverman Amy, Castano Rebecca, Chang Albert, Chapsky Lars, Cheng Cecilia, Connor Brian, Dang Lan, Doran GaryORCID, Fisher Brendan, Frankenberg ChristianORCID, Fu DejianORCID, Granat Robert, Hobbs Jonathan, Lee Richard A. M., Mandrake Lukas, McDuffie JamesORCID, Miller Charles E., Myers Vicky, Natraj Vijay, O'Brien Denis, Osterman Gregory B., Oyafuso Fabiano, Payne Vivienne H., Pollock Harold R., Polonsky Igor, Roehl Coleen M.ORCID, Rosenberg RobertORCID, Schwandner FlorianORCID, Smyth Mike, Tang Vivian, Taylor Thomas E.ORCID, To Cathy, Wunch DebraORCID, Yoshimizu Jan
Abstract
Abstract. The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO2) with the accuracy, resolution, and coverage needed to quantify CO2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014 and has gathered more than 2 years of observations. The v7/v7r operational data products from September 2014 to January 2016 are discussed here. On monthly timescales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO2 dry air mole fraction, XCO2, that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of XCO2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes XCO2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north–south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north–south XCO2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in XCO2 across the Northern Hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO2. As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart XCO2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high-resolution global dataset.
Funder
Jet Propulsion Laboratory
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference56 articles.
1. Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., and Hajima, T.: Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models, J. Climate, 26, 5289–5314, 2013. 2. Basilio, R. R., Pollock, H., and Hunyadi-Lay, S. L.: OCO-2 (Orbiting Carbon Observatory-2) mission operations planning and initial operations experiences, Proc. SPIE 9241, Sensors, Systems, and Next-Generation Satellites XVIII, 924105, https://doi.org/10.1117/12.2074164, 2014. 3. Bösch, H., Toon, G., Sen, B., Washenfelder, R., Wennberg, P., Buchwitz, M., de Beek, R., Burrows, J., Crisp, D., Christi, M., Connor, B. J., Natraj, V., and Yung, Y. L.: Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin, J. Geophys. Res., 111, 148–227, https://doi.org/10.1029/2006JD007080, 2006. 4. Bösch, H., Baker, D., Connor, B., Crisp, D., and Miller, C.: Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 Mission, Remote Sens., 3, 270–304, https://doi.org/10.3390/rs3020270, 2011. 5. Buchwitz, M., de Beek, R., Noël, S., Burrows, J. P., Bovensmann, H., Schneising, O., Khlystova, I., Bruns, M., Bremer, H., Bergamaschi, P., Körner, S., and Heimann, M.: Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval, Atmos. Chem. Phys., 6, 2727–2751, https://doi.org/10.5194/acp-6-2727-2006, 2006.
Cited by
177 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|