What controls biological production in coastal upwelling systems? Insights from a comparative modeling study

Author:

Lachkar Z.,Gruber N.

Abstract

Abstract. The magnitude of net primary production (NPP) in Eastern Boundary Upwelling Systems (EBUS) is traditionally viewed as directly reflecting the wind-driven upwelling intensity. Yet, different EBUS show different sensitivities of NPP to upwelling-favorable winds (Carr and Kearns, 2003). Here, using a comparative modeling study of the California Current System (California CS) and Canary Current System (Canary CS), we show how physical and environmental factors, such as light, temperature and cross-shore circulation modulate the response of NPP to upwelling strength. To this end, we made a series of eddy-resolving simulations of the two upwelling systems using the Regional Oceanic Modeling System (ROMS), coupled to a nitrogen-based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) ecosystem model. Using identical ecological/biogeochemical parameters, our coupled model simulates a level of NPP in the California CS that is 50 % smaller than that in the Canary CS, in agreement with observationally based estimates. We find this much lower NPP in the California CS despite phytoplankton in this system having nearly 20 % higher nutrient concentrations available to fuel their growth. This conundrum can be explained by: (1) phytoplankton having a faster nutrient-replete growth in the Canary CS relative to the California CS; a consequence of more favorable light and temperature conditions in the Canary CS, and (2) the longer nearshore water residence times in the Canary CS, which permit a larger buildup of biomass in the upwelling zone, thereby enhancing NPP. The longer residence times in the Canary CS appear to be a result of the wider continental shelves and the lower mesoscale activity characterizing this upwelling system. This results in a weaker offshore export of nutrients and organic matter, thereby increasing local nutrient recycling and reducing the spatial decoupling between new and export production in the Canary CS. Our results suggest that climate change-induced perturbations such as upwelling favorable wind intensification might lead to contrasting biological responses in the California CS and the Canary CS, with major implications for the biogeochemical cycles and fisheries in these two ecosystems.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3