Geomagnetic control of the spectrum of traveling ionospheric disturbances based on data from a global GPS network

Author:

Afraimovich E. L.,Kosogorov E. A.,Lesyuta O. S.,Ushakov I. I.,Yakovets A. F.

Abstract

Abstract. In this paper an attempt is made to verify the hypothesis of the role of geomagnetic disturbances as a factor in determining the intensity of traveling ionospheric disturbances (TIDs). To improve the statistical validity of the data, we have used the method involving a global spatial averaging of disturbance spectra of the total electron content (TEC). To characterize the TID intensity quantitatively, we suggest that a new global index of the degree of disturbance should be used, which is equal to the mean value of the rms variations in TEC within the selected range of spectral periods (of 20– 60 min, in the present case). The analysis has been made for a set of 100 to 300 GPS stations for 10 days with a different level of geomagnetic activity (Dst from 0 to –350 nT; the Kp index from 3 to 9). It was found that power spectra of daytime TEC variations in the range of 20–60 min periods under quiet conditions have a power-law form with the slope index k = –2.5. With an increase in the level of magnetic disturbance, there is an increase in the total intensity of TIDs, with a concurrent kink of the spectrum caused by an increase in oscillation intensity in the range of 20–60 min. The TEC variation amplitude is found to be smaller at night than during the daytime, and the spectrum decreases in slope, which is indicative of a disproportionate increase in the amplitude of the small-scale part of the spectrum. It was found that an increase in the level of geomagnetic activity is accompanied by an increase in the total intensity of TEC; however, it does not correlate with the absolute level of Dst, but rather with the value of the time derivative of Dst (a maximum correlation coefficient reaches –0.94). The delay of the TID response of the order of 2 hours is consistent with the view that TIDs are generated in auroral regions, and propagate equatorward with the velocity of about 300–400 m/s.Key words. Ionosphere (ionospheric disturbances; auroral ionosphere; equatorial ionopshere)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3