Seven years of IASI ozone retrievals from FORLI: validation with independent total column and vertical profile measurements

Author:

Boynard Anne,Hurtmans Daniel,Koukouli Mariliza E.ORCID,Goutail FlorenceORCID,Bureau Jérôme,Safieddine SarahORCID,Lerot Christophe,Hadji-Lazaro Juliette,Pommereau Jean-PierreORCID,Pazmino Andrea,Zyrichidou Irene,Balis DimitrisORCID,Barbe Alain,Mikhailenko Semen N.ORCID,Loyola DiegoORCID,Valks Pieter,Van Roozendael Michel,Coheur Pierre-François,Clerbaux Cathy

Abstract

Abstract. This paper presents an extensive inter-comparison and validation for the ozone (O3) product measured by the two Infrared Atmospheric Sounding Interferometers (IASI) launched onboard the Metop-A and Metop-B satellites in 2006 and in 2012, respectively. IASI O3 total columns and vertical profiles obtained from Fast Optimal Retrievals on Layers for IASI (FORLI-O3) v20140922 software (running up until recently) are validated against independent observations during the period 2008–2014 on a global scale. On average for the period 2013–2014, IASI-A and IASI-B TOCs retrieved using FORLI are consistent, with IASI-B providing slightly lower values with a global difference of only 0.2±0.8 %. The comparison between IASI-A and IASI-B O3 vertical profiles shows differences within ±2 % over the entire altitude range. Global validation results for seven years of IASI TOCs from FORLI against GOME-2/Metop-A, Dobson and Brewer data show that, on average, IASI overestimates the UV data by 5–6 % with the largest differences found in the Southern high latitudes. The comparison with UV-vis SAOZ measurements shows a mean bias between IASI and SAOZ TOCs of 2–4 % in the mid-latitudes and tropics, and 7 % at the polar circle. Part of the discrepancies found at high latitudes can be attributed to the limited information content in the observations, due to low brightness temperatures. The comparison with ozonesonde vertical profiles (limited to 30 km) shows that on average IASI with FORLI processing underestimates O3 by ~5–15 % in the troposphere while it overestimates O3 by ~10–40 % in the stratosphere depending on the latitude. In the Northern middle latitudes, the bias varies within ±20 % for the entire altitude range. The largest relative differences are found in the tropical tropopause region; this can be explained by the low O3 amounts leading to large relative errors. In this study, we also evaluate an updated version of FORLI-O3 retrieval software (v20151001), using look-up tables recalculated to cover a larger spectral range using the latest HITRAN spectroscopic database (HITRAN 2012), and implementing numerical corrections. The assessement of the new O3 product with the same set of observations as that used for the validation exercise shows a correction of ~4 % for the TOC positive bias when compared to the UV ground-based and satellite observations, bringing the overall global comparison to ~1–2 % on average. This improvement is mainly associated with a decrease in the retrieved O3 concentration in the stratosphere (above 30 hPa/25 km) as shown by the comparison with ozonesonde data.

Publisher

Copernicus GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3