Abstract
Abstract. In November 2010, a large sinkhole opened up in the urban area of Schmalkalden, Germany. To determine the key factors which benefited the development of this collapse structure and therefore the dissolution, we carried out several shear-wave reflection-seismic profiles around the sinkhole. In the seismic sections we see evidence of the Mesozoic tectonic movement in the form of a NW–SE striking, dextral strike-slip fault, known as the Heßleser Fault, which faulted and fractured the subsurface below the town. The strike-slip faulting created a zone of small blocks ( < 100 m in size), around which steep-dipping normal faults, reverse faults and a dense fracture network serve as fluid pathways for the artesian-confined groundwater. The faults also acted as barriers for horizontal groundwater flow perpendicular to the fault planes. Instead groundwater flows along the faults which serve as conduits and forms cavities in the Permian deposits below ca. 60 m depth. Mass movements and the resulting cavities lead to the formation of sinkholes and dissolution-induced depressions. Since the processes are still ongoing, the occurrence of a new sinkhole cannot be ruled out. This case study demonstrates how S-wave seismics can characterize a sinkhole and, together with geological information, can be used to study the processes that result in sinkhole formation, such as a near-surface fault zone located in soluble rocks. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.
Subject
General Earth and Planetary Sciences
Reference77 articles.
1. Abelson, M., Baer, G., Shtivelman, V., Wachs, D., Raz, E., Crouvi, O., Kurzon, I., and Yechieli, Y.: Collapse-sinkholes and radar interferometry reveal neotectonics concealed within the Dead Sea basin, Geophys. Res. Lett., 30, 10, 52.1–52.3, https://doi.org/10.1029/2003GL017103, 2003.
2. Andreas, D. and Wunderlich, J.: Tektonische Verhältnisse am Westthüringer Quersprung (nordwestlicher Thüringer Wald). II.Spät- und postvariszische Entwicklung an der Reifstieg-Störung un die frühe Entwicklungsphase des Ringgau-Fränkischen Lineaments, Beitr. Geol. Thüringen, 5, 39–72, Weimar, Germany, 1998.
3. Augarde, C. E., Lyamin, A. V., and Sloan, S. W.: Prediction of Undrained Sinkhole Collapse, J. Geotech. Geoenviron., 129, 3, 197–205, https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(197), 2003.
4. Baker, G. S.: Processing Near-Surface Seismic Reflection Data: A primer, Course Note Series-Soc. Expl. Geophys., 9, 1–7, https://doi.org/10.1190/1.9781560802020, 1999.
5. Beck, B. F.: Environmental and engineering effects of sinkholes – the process behind the problems, Environ. Geol., 12, 2, 71–78, https://doi.org/10.1007/BF02574791, 1988.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献