Synergistic use of Lagrangian dispersion modelling, satellite and surface remote sensing measurements for the investigation of volcanic plumes: the Mount Etna eruption of 25–27 October 2013
Author:
Sellitto P., di Sarra A., Corradini S., Boichu M., Herbin H., Dubuisson P., Sèze G., Meloni D., Monteleone F., Merucci L., Rusalem J., Salerno G., Briole P., Legras B.ORCID
Abstract
Abstract. In this paper we combine SO2/ash plume dispersion modelling, satellite and surface remote sensing observations to study the regional influence of a relatively weak volcanic eruption from Mount Etna on the optical and micro-physical properties of Mediterranean aerosols. We analyse the Mount Etna eruption episode of 25–27 October 2013. The evolution of the plume along the trajectory is investigated by means of the FLEXPART (FLEXible PARTicle dispersion model) Lagrangian dispersion model. The satellite dataset includes true colour images, retrieved values of volcanic SO2 and ash, and estimates of SO2 and ash emission rates derived from MODIS (MODerate resolution Imaging Spectroradiometer) observations, and estimates of cloud top pressure from SEVIRI (Spinning Enhanced Visible and InfraRed Imager). Surface remote sensing measurements of aerosol and SO2 made at the ENEA Station for Climate Observations (35.52° N, 12.63° E, 50 m a.s.l.) on the island of Lampedusa are used in the analysis. The combination of these different datasets suggests that SO2 and ash, despite the initial injection occurred at about 7.0 km altitude, reached altitudes around 10–12 km and influenced the aerosol size distribution at a distance more than 350 km downwind. This study indicates that even a relatively weak volcanic eruption may produce an observable effect on the aerosol properties at the regional scale. The impact of secondary sulphate particles on the aerosol size distribution at Lampedusa is discussed, and estimates of the clear sky direct aerosol radiative forcing are derived. Daily shortwave radiative forcing efficiencies are calculated with the LibRadtran model. They are estimated between −39 and −48 W m−2 AOD−1 at the top of the atmosphere, and between −66 and −49 W m−2 AOD−1, at the surface, with the variability in the estimates mainly depending on the aerosol single scattering albedo. These results suggest that sulphate particles played a large role, while the contribution by ash particles was small in the volcanic plume arriving at Lampedusa during this event.
Publisher
Copernicus GmbH
Reference88 articles.
1. Allard, P., Carbonnelle, J., Dajlevic, D., Bronec, J. L., Morel, P., Robe, M. C., Maurenas, J. M., Faivre-Pierret, R., Martin, D., Sabroux, J. C., and Zettwoog, P.: Eruptive and diffuse emissions of CO2 from Mount Etna, Nature, 351, 387–391, https://doi.org/10.1038/351387a0, 1991. 2. Anderson, G. P., Clough, S. A., and Division, U. A. F. G. L. O. P.: AFGL atmospheric constituent profiles (0–120 km), 1986. 3. Andreae, M. O.: The Aerosol Nucleation Puzzle, Science, 339, 911–912, https://doi.org/10.1126/science.1233798, 2013. 4. Artuso, F., Chamard, P., Piacentino, S., Sferlazzo, D., Silvestri, L. D., di Sarra, A., Meloni, D., and Monteleone, F.: Influence of transport and trends in atmospheric CO2 at Lampedusa, Atmos. Environ., 43, 3044–3051, https://doi.org/10.1016/j.atmosenv.2009.03.027, 2009. 5. Boichu, M., Clarisse, L., Péré, J.-C., Herbin, H., Goloub, P., Thieuleux, F., Ducos, F., Clerbaux, C., and Tanré, D.: Temporal variations of flux and altitude of sulfur dioxide emissions during volcanic eruptions: implications for long-range dispersal of volcanic clouds, Atmos. Chem. Phys., 15, 8381–8400, https://doi.org/10.5194/acp-15-8381-2015, 2015.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|