Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling

Author:

Henne S.ORCID,Brunner D.ORCID,Oney B.,Leuenberger M.ORCID,Eugster W.ORCID,Bamberger I.,Meinhardt F.,Steinbacher M.ORCID,Emmenegger L.ORCID

Abstract

Abstract. Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional scale inverse modelling study to quantify the emissions of methane (CH4) from Switzerland, making use of the newly established CarboCount-CH measurement network and a high resolution Lagrangian transport model. Overall we estimate national CH4 emissions to be 196 ± 18 Gg yr−1 for the year 2013 (1σ uncertainty). This result is in close agreement with the recently revised "bottom-up" estimate of 206 ± 33 Gg yr−1 published by the Swiss Federal Office for the Environment as part of the Swiss Greenhouse Gas Inventory (SGHGI). Results from sensitivity inversions using alternative prior emissions, covariance settings, baseline treatments, two different inverse algorithms (Bayesian and extended Kalman Filter), and two different transport models confirms the robustness and independent character of our estimate. According to the latest "bottom-up" inventory the main CH4 source categories in Switzerland are agriculture (78 %), waste handling (15 %) and natural gas distribution and combustion (6 %). The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH4 emissions by 10 to 20 % in the most recent national inventory, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results suggesting that leakages from natural gas disribution are only a minor source of CH4 in Switzerland. This is consistent with rather low emissions of 8.4 Gg yr−1 reported by the SGHGI but inconsistent with the much higher value of 32 Gg yr−1 implied by the EDGARv4.2 inventory for this sector. Increased CH4 emissions (up to 30 % compared to the prior) were deduced for the north-eastern parts of Switzerland. This feature was common to most sensitivity inversions, which rules out an artefact of the transport model and the inversion system. However, it was not possible to assign an unambiguous source process to the region. The observations of the CarboCount-CH network provided invaluable and independent information for the validation of the national bottom-up inventory. Similar systems need to be sustained to provide independent monitoring of future climate agreements.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3