Statistical analysis of the long-range transport of the 2015 Calbuco volcanic plume from ground-based and space-borne observations

Author:

Bègue Nelson,Shikwambana LeratoORCID,Bencherif Hassan,Pallotta Juan,Sivakumar Venkataraman,Wolfram ElianORCID,Mbatha Nkanyiso,Orte FacundoORCID,Du Preez David JeanORCID,Ranaivombola MarionORCID,Piketh Stuart,Formenti PaolaORCID

Abstract

Abstract. This study investigates the influence of the 2015 Calbuco eruption (41.2∘ S, 72.4∘ W; Chile) on the total columnar aerosol optical properties over the Southern Hemisphere. The well-known technic of sun photometry was applied for the investigation of the transport and spatio-temporal evolution of the optical properties of the volcanic plume. The CIMEL sun photometer measurements performed at six South American and three African sites were statistically analysed. This study involves the use of the satellite observations and a back-trajectory model. The passage of the Calbuco plume is statistically detectable in the aerosol optical depth (AOD) observations obtained from sun photometer and MODIS observations. This statistical detection confirms that the majority of the plume was transported over the northeastern parts of South America and reached the South African region 1 week after the eruption. The plume impacted the southern parts of South America to a lesser extent. The highest AOD anomalies were observed over the northeastern parts of South America. Over the South African sites, the AOD anomalies induced by the spread of the plume were quite homogeneously distributed between the east and west coasts. The optical characteristics of the plume near the source region were consistent with an ash-bearing plume. Conversely, sites further from the Calbuco volcano were influenced by ash-free plume. The optical properties discussed in this paper will be used as inputs for numerical models for further investigation of the ageing of the Calbuco plume in a forthcoming study.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3