Maximum-variance gradiometer technique for removal of spacecraft-generated disturbances from magnetic field data
-
Published:2020-12-11
Issue:2
Volume:9
Page:451-469
-
ISSN:2193-0864
-
Container-title:Geoscientific Instrumentation, Methods and Data Systems
-
language:en
-
Short-container-title:Geosci. Instrum. Method. Data Syst.
Author:
Constantinescu Ovidiu DragoşORCID, Auster Hans-Ulrich, Delva Magda, Hillenmaier Olaf, Magnes WernerORCID, Plaschke FerdinandORCID
Abstract
Abstract. In situ measurement of the magnetic field using spaceborne instruments requires a magnetically clean platform and/or a very long boom for accommodating magnetometer sensors at a large distance from the spacecraft body. This significantly drives up the costs and the time required to build a spacecraft. Here we present an alternative sensor configuration and a technique allowing for removal of the spacecraft-generated AC disturbances from the magnetic field measurements, thus lessening the need for a magnetic cleanliness programme and allowing for shorter boom length. The final expression of the corrected data takes the form of a linear combination of the measurements from all sensors, allowing for simple onboard software implementation. The proposed technique is applied to the Service Oriented Spacecraft Magnetometer (SOSMAG) on board the Korean geostationary satellite GeoKompsat-2A (GK2A). In contrast to other missions where multi-sensor measurements were used to clean the data on the ground, the SOSMAG instrument performs the cleaning on board and transmits the corrected data in real time, as needed by space weather applications. The successful elimination of the AC disturbances originating from several sources validates the proposed cleaning technique.
Publisher
Copernicus GmbH
Subject
Atmospheric Science,Geology,Oceanography
Reference26 articles.
1. Angelopoulos, V.: The THEMIS mission, Space Sci. Rev., 141, 5–34,
https://doi.org/10.1007/s11214-008-9336-1, 2008. a 2. Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Constantinescu,
O. D., Fischer, D., Fornaçon, K. H., Georgescu, E., Harvey, P.,
Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Okrafka, K., Plaschke,
F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglu, A., and Wiedemann, M.:
The THEMIS fluxgate magnetometer, Space Sci. Rev., 141, 235–264,
https://doi.org/10.1007/s11214-008-9365-9, 2008. a 3. Auster, U., Magnes, W., Delva, M., Valavanoglou, A., Leitner, S.,
Hillenmaier, O., Strauch, C., Brown, P., Whiteside, B., Bendyk, M.,
Hilgers, A., Kraft, S., Luntama, J. P., and Seon, J.: Space Weather
Magnetometer Set with Automated AC Spacecraft Field Correction for
GEO-KOMPSAT-2A, in: ESA Workshop on Aerospace EMS, Vol. 738, ESA
Special Publication, p. 37, 2016. a 4. Balogh, A.: Planetary Magnetic Field Measurements: Missions and
Instrumentation, Space Sci. Rev., 152, 23–97,
https://doi.org/10.1007/s11214-010-9643-1, 2010. a 5. Behannon, K. W., Acuna, M. H., Burlaga, L. F., Lepping, R. P., Ness,
N. F., and Neubauer, F. M.: Magnetic Field Experiment for Voyagers 1 and
2, Space Sci. Rev., 21, 235–257, https://doi.org/10.1007/BF00211541, 1977. a
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|