Study on the dynamic performance of concrete mixer's mixing drum

Author:

Yang Jiapeng,Zeng Hua,Zhu Tongqing,An Qi

Abstract

Abstract. When working, the geometric distribution shape of concrete in concrete mixing truck's rotary drum changes continuously, which cause a great difficulty for studying the dynamic performance of the mixing drum. In this paper, the mixing system of a certain type of concrete mixing truck is studied. A mathematical formulation has been derived through the force analysis to calculate the supporting force. The calculation method of the concrete distribution shape in the rotary drum is developed. A new transfer matrix is built with considering the concrete geometric distribution shape. The effects of rotating speed, inclination angle and concrete liquid level on the vibration performance of the mixing drum are studied with a specific example. Results show that with the increase of rotating speed, the vibration amplitude of the mixing drum decreases. The peak amplitude gradually moves to the right with the inclination angle increasing. The amplitude value of the peak's left side decreases when tilt angle increases, while the right side increases. The maximum unbalanced response amplitude of the drum increases with the decrease of concrete liquid level height, and the vibration peak moves to the left.

Publisher

Copernicus GmbH

Subject

Industrial and Manufacturing Engineering,Fluid Flow and Transfer Processes,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construction Equipment Selection through Scenario-Based FDEA: Truck-Mixer Drums;KSCE Journal of Civil Engineering;2021-05-04

2. Design and Simulation of a Novel Planetary Gear Mixer for Dry Particle Materials;Recent Patents on Mechanical Engineering;2020-10-13

3. Electric Multipurpose Vehicle Power Take-Off: Overview, Load Cycles and Actuation via Synchronous Reluctance Machine;2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM);2019-08

4. Modeling and force analysis of drum devices based on the geometry of the material segment;Journal of Physics: Conference Series;2019-07-01

5. Calculating method of the fatigue life for the main supporting bearing of mixing drum in concrete mixing truck when considering drum’s vibration;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics;2018-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3