Automated reconstruction of rainfall events responsible for shallow landslides

Author:

Vessia G.ORCID,Parise M.,Brunetti M. T.ORCID,Peruccacci S.,Rossi M.ORCID,Vennari C.ORCID,Guzzetti F.ORCID

Abstract

Abstract. Over the last 40 years, many contributions have identified empirical rainfall thresholds (e.g. rainfall intensity (I) vs. rainfall duration (D), cumulated rainfall vs. rainfall duration (ED), cumulated rainfall vs. rainfall intensity (EI)) for the possible initiation of shallow landslides, based on local and global inventories. Although different methods to trace the threshold curves have been proposed and discussed in literature, a systematic study to develop an automated procedure to select the rainfall event responsible for the landslide occurrence has only rarely been addressed. Objective criteria for estimating the rainfall responsible for the landslide occurrence play a prominent role on the threshold values. In this paper, two criteria for the identification of the effective rainfall events are presented. The first criterion is based on the analysis of the time series of rainfall mean intensity values over 1 month preceding the landslide occurrence. The second criterion is based on the analysis of the trend in the time function of the cumulated mean intensity series calculated from the rainfall records measured through rain gauges. The two criteria have been implemented in an automated procedure that is written in the R language. A sample of 100 shallow landslides collected in Italy from 2002 to 2012 was used to calibrate the procedure. The cumulated event rainfall (E) and duration (D) of rainfall events that triggered the documented landslides are calculated through the new procedure and are fitted with power law in the D, E diagram. The results are discussed by comparing the D, E pairs calculated by the automated procedure and the ones by the expert method.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference35 articles.

1. Aleotti, P.: A warning system for rainfall-induced shallow failures, Eng. Geol., 73, 247–265, 2004.

2. Brand, E. W., Premchitt, J., and Phillipson, H. B.: Relationship between rainfall and landslides in Hong Kong, Proc. 4th Int. Symp. on Landslides, Toronto, 1, 377–384, 1984.

3. Brunetti, M. T., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., and Guzzetti, F.: Rainfall thresholds for the possible occurrence of landslides in Italy, Nat. Hazards Earth Syst. Sci., 10, 447–458, https://doi.org/10.5194/nhess-10-447-2010, 2010.

4. Caine, N.: The rainfall intensity-duration control of shallow landslides and debris flows, Geograf. Annal, 62A, 23–27, 1980.

5. Calcaterra, D., Parise, M., Palma, B., and Pelella, L.: The influence of meteoric events in triggering shallow landslides in pyroclastic deposits of Campania, Italy, in: Landslides in research, theory and practice, edited by: Bromhead, E., Dixon, N., and Ibsen, M. L., Proc. 8th International Symposium on Landslides, Cardiff, 1, 209–214, 2000.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3