Coupling MAR (Modèle Atmosphérique Régional) with PISM (Parallel Ice Sheet Model) mitigates the positive melt–elevation feedback

Author:

Delhasse AlisonORCID,Beckmann JohannaORCID,Kittel ChristophORCID,Fettweis XavierORCID

Abstract

Abstract. The Greenland Ice Sheet is a key contributor to sea level rise. By melting, the ice sheet thins, inducing higher surface melt due to lower surface elevations, accelerating the melt coming from global warming. This process is called the melt–elevation feedback and can be considered by using two types of models: either (1) atmospheric models, which can represent the surface mass balance (SMB), or SMB estimates resulting from simpler models such as positive degree day models or (2) ice sheet models representing the surface elevation evolution. The latter ones do not represent the surface mass balance explicitly as well as polar-oriented climate models. A new coupling between the MAR (Modèle Atmosphérique Régional) regional climate model and the PISM (Parallel Ice Sheet Model) ice sheet model is presented here following the CESM2 (Community Earth System Model; SSP5-8.5, Shared Socioeconomic Pathway) scenario until 2100 at the MAR lateral boundaries. The coupling is extended to 2200 with a stabilised climate (+7 ∘C compared to 1961–1990) by randomly sampling the last 10 years of CESM2 to force MAR and reaches a sea level rise contribution of 64 cm. The fully coupled simulation is compared to a one-way experiment where surface topography remains fixed in MAR. However, the surface mass balance is corrected for the melt–elevation feedback when interpolated on the PISM grid by using surface mass balance vertical gradients as a function of local elevation variations (offline correction). This method is often used to represent the melt–elevation feedback and prevents a coupling which is too expensive in computation time. In the fully coupled MAR simulation, the ice sheet morphology evolution (changing slope and reducing the orographic barrier) induces changes in local atmospheric patterns. More specifically, wind regimes are modified, as well as temperature lapse rates, influencing the melt rate through modification of sensible heat fluxes at the ice sheet margins. We highlight mitigation of the melt lapse rate on the margins by modifying the surface morphology. The lapse rates considered by the offline correction are no longer valid at the ice sheet margins. If used (one-way simulation), this correction implies an overestimation of the sea level rise contribution of 2.5 %. The mitigation of the melt lapse rate on the margins can only be corrected by using a full coupling between an ice sheet model and an atmospheric model.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3