A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber

Author:

Alfarra M. R.,Paulsen D.,Gysel M.,Garforth A. A.,Dommen J.,Prévôt A. S. H.,Worsnop D. R.,Baltensperger U.,Coe H.

Abstract

Abstract. An Aerodyne Aerosol Mass Spectrometer (AMS) has been utilised to provide on-line measurements of the mass spectral signatures and mass size distributions of the oxidation products resulting from irradiating 1,3,5-trimethylbenzene (1,3,5-TMB) and α-pinene, separately, in the presence of nitrogen oxide, nitrogen dioxide and propene in a reaction chamber. Mass spectral results indicate that both precursors produce SOA with broadly similar chemical functionality of a highly oxidised nature. However, significant differences occur in the minor mass spectral fragments for the SOA in the two reaction systems, indicating that they have different molecular composition. Nitrogen-containing organic compounds have been observed in the photooxidation products of both precursors, and their formation appeared to be controlled by the temporal variability of NOx. Although the overall fragmentation patterns of the photooxidation products in both systems did not change substantially over the duration of each experiment, the contribution of some individual mass fragments to total mass appeared to be influenced by the irradiation time. The effective densities of the 1,3,5-TMB and α-pinene SOA particles were determined for various particle sizes using the relationship between mobility and vacuum aerodynamic diameters. The effective density for the TMB-SOA ranged from 1.35–1.40 g/cm3, while that for α-pinene SOA ranged from 1.29–1.32 g/cm3. The determined effective densities did not show dependence on irradiation time. Results suggest that further chemical processing of SOA takes place in the real atmosphere, as neither the α-pinene nor the 1,3,5-TMB experimental results reproduce the right relative product distribution between carbonyl-containing and multifunctional carboxylic acid species measured at ambient locations influenced by aged continental organic aerosols.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3