Stable carbon isotope ratios of ambient aromatic volatile organic compounds

Author:

Kornilova Anna,Huang LinORCID,Saccon Marina,Rudolph Jochen

Abstract

Abstract. Measurements of mixing ratios and stable carbon isotope ratios of aromatic volatile organic compounds (VOC) in the atmosphere were made in Toronto (Canada) in 2009 and 2010. Consistent with the kinetic isotope effect for reactions of aromatic VOC with the OH radical the observed stable carbon isotope ratios are on average significantly heavier than the isotope ratios of their emissions. The change of carbon isotope ratio between emission and observation is used to determine the extent of photochemical processing (photochemical age,  ∫ [OH]dt) of the different VOC. It is found that  ∫ [OH]dt of different VOC depends strongly on the VOC reactivity. This demonstrates that for this set of observations the assumption of a uniform  ∫ [OH]dt for VOC with different reactivity is not justified and that the observed values for  ∫ [OH]dt are the result of mixing of VOC from air masses with different values for  ∫ [OH]dt. Based on comparison between carbon isotope ratios and VOC concentration ratios it is also found that the varying influence of sources with different VOC emission ratios has a larger impact on VOC concentration ratios than photochemical processing. It is concluded that for this data set the use of VOC concentration ratios to determine  ∫ [OH]dt would result in values for  ∫ [OH]dt inconsistent with carbon isotope ratios and that the concept of a uniform  ∫ [OH]dt for an air mass has to be replaced by the concept of individual values of an average  ∫ [OH]dt for VOC with different reactivity.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Foundation for Climate and Atmospheric Sciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3