Enrichment of trace metals from acid sulfate soils in sediments of the Kvarken Archipelago, eastern Gulf of Bothnia, Baltic Sea

Author:

Virtasalo Joonas J.ORCID,Österholm Peter,Kotilainen Aarno T.,Åström Mats E.

Abstract

Abstract. Rivers draining the acid sulfate soils of western Finland are known to deliver large amounts of trace metals with detrimental environmental consequences to the recipient estuaries in the eastern Gulf of Bothnia, northern Baltic Sea. However, the distribution of these metals in the coastal sea area and the relevant metal transport mechanisms have been less studied. This study investigates the spatial and temporal distribution of metals in sediments at nine sites in the Kvarken Archipelago, which is the recipient system of Laihianjoki and Sulvanjoki rivers that are impacted by acid sulfate soils. The contents of Cd, Co, Cu, La, Mn, Ni, and Zn increased in the cores during the 1960s and 1970s as a consequence of intensive artificial drainage of the acid sulfate soil landscape. Metal deposition has remained at high levels since the 1980s. The metal enrichment in sea floor sediments is currently visible at least 25 km seaward from the river mouths. Comparison with sediment quality guidelines shows that the metal contents are very likely to cause detrimental effects on marine biota more than 12 km out from the river mouths. The dynamic sedimentary environment of the shallow archipelago makes these sediments potential future sources of metals to the ecosystem. Finally, the strong association of metals and nutrients in the same sediment grain size class of 2–6 µm suggests that the transformation of dissolved organic matter and metals to metal–organic aggregates at the river mouths is the key mechanism of seaward trace metal transport, in addition to co-precipitation with Mn oxyhydroxides identified in previous studies. The large share of terrestrial organic carbon in the total organic C in these sediments (interquartile range – 39 %–48 %) highlights the importance of riverine organic matter supply. These findings are important for the estimation of environmental risks and the management of biologically sensitive coastal sea ecosystems.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3