A neural network approach for the simultaneous retrieval of volcanic ash parameters and SO<sub>2</sub> using MODIS data

Author:

Piscini A.,Picchiani M.,Chini M.,Corradini S.,Merucci L.,Del Frate F.,Stramondo S.ORCID

Abstract

Abstract. In this work neural networks have been used for the retrieval of volcanic ash and SO2 parameters based on Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral measurements. Different neural networks were built for each parameter to be retrieved, experimenting different topologies and evaluating their performances. As test case the May 2010 Eyjafjallajokull eruption has been considered. A set of six MODIS images have been used for the training and validation phases. In order to estimate of the parameters associated with volcanic eruption such as ash mass, effective radius, aerosol optical depth and sulphur dioxide columnar abundance, the neural networks have been trained by using the retrievals obtained from well known algorithms based on simulated radiances at the top of the atmosphere estimated from radiative transfer models. Three neural network's topologies with a different number of inputs have been compared: (a) only three MODIS TIR channels, (b) all multispectral MODIS channels and (c) only the channels that were selected by a pruning procedure applied to all MODIS channels. Results show that the neural network approach is able to reproduce very well the results obtained from the standard algorithms for all retrieved parameters, showing a root mean square error (RMSE) computed from the validation sets below the target data standard deviation (STD). In particular the network built considering all the MODIS channels gives a better performance in terms of specialization, mainly on images close in time to the training ones, while, as expected, the networks with less inputs reveals a better generalization performance when applied to independent datasets. In order to increase the network generalization capability, a pruning algorithm has been also implemented. Such a procedure permits to operate a features selection, extracting only the most significant MODIS channels from images. The results of pruning revealed that obtained inputs, for all the retrieved parameters, correspond to the TIR channels sensitive to ash, plus some other channels in the visible and mid-infrared spectral ranges. The artificial neural network approach proved to be effective in addressing the inversion problem for the estimation of volcanic ash and SO2 cloud parameters, providing fast and reliable retrievals, which are important requirements during the volcanic crisis.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3