Advanced hodograph-based analysis technique to derive gravity-wave parameters from lidar observations
-
Published:2020-02-05
Issue:2
Volume:13
Page:479-499
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Strelnikova Irina, Baumgarten GerdORCID, Lübken Franz-Josef
Abstract
Abstract. An advanced hodograph-based analysis technique to derive gravity-wave (GW) parameters from observations of temperature and winds is developed and presented as a step-by-step recipe with justification for every step in such an analysis. As the most adequate background removal technique the 2-D FFT is suggested. For an unbiased analysis of fluctuation whose amplitude grows with height exponentially, we propose applying a scaling function of the form exp (z∕(ςH)), where H is scale height, z is altitude, and the constant ς can be derived by a linear fit to the fluctuation profile and should be in the range 1–10.
The most essential part of the proposed analysis technique consists of fitting cosine waves to simultaneously measured profiles of zonal and meridional winds and temperature and subsequent hodograph analysis of these fitted waves.
The linear wave theory applied in this analysis is extended by introducing a wave packet envelope term exp(-(z-z0)2/2σ2) that accounts for limited extent of GWs in the observational data set. The novelty of our approach is that its robustness ultimately allows for automation of the hodograph analysis and resolves many more GWs than can be inferred by the manually applied hodograph technique. This technique allows us to unambiguously identify upward- and downward-propagating GWs and their parameters.
This technique is applied to unique lidar measurements of temperature and horizontal winds measured in an altitude range of 30 to 70 km.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference70 articles.
1. Alexander, M. J.: Global and seasonal variations in three-dimensional
gravity wave momentum flux from satellite limb-sounding temperatures,
Geophys. Res. Lett., 42, 6860–6867, https://doi.org/10.1002/2015GL065234, 2015. a 2. Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S.,
Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M.,
Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent,
R., and Watanabe, S.: Recent developments in gravity-wave effects in climate
models and the global distribution of gravity-wavemomentum flux from
observations and models, Q. J. Roy. Meteor. Soc., 136, 1103–1124, https://doi.org/10.1002/qj.637, 2010. a, b, c, d 3. Baumgarten, G.: Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km, Atmos. Meas. Tech., 3, 1509–1518, https://doi.org/10.5194/amt-3-1509-2010, 2010. a, b 4. Baumgarten, G., Fiedler, J., Hildebrand, J., and Lübken, F.-J.: Inertia
gravity wave in the stratosphere and mesosphere observed by Doppler wind
and temperature lidar, Geophys. Res. Lett., 42, 10929–10936,
https://doi.org/10.1002/2015GL066991, 2015. a, b, c, d, e, f, g 5. Baumgarten, K., Gerding, M., and Lübken, F.-J.: Seasonal variation of
gravity wave parameters using different filter methods with daylight lidar
measurements at mid-latitudes, J. Geophys. Res.-Atmos.,
122, 2683–2695, https://doi.org/10.1002/2016JD025916, 2017. a
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|